Yayın: Unrestricted Pell and Pell – Lucas 2N-ons
| dc.contributor.author | BAYRAKÇI ÖZSOY, Öznur | |
| dc.contributor.author | BİLGİCİ, Göksal | |
| dc.date.accessioned | 2026-01-04T17:28:53Z | |
| dc.date.issued | 2022-11-30 | |
| dc.description.abstract | In this study, we define unrestricted Pell and Pell – Lucas hyper-complex numbers. We choose arbitrary Pell and Pell – Lucas numbers for the coefficients of the ordered basis 〖{e〗_0,e_1,⋯,e_(N-1)} of hyper-complex 2^N-ons where N∈{0,1,2,3,4} and call these hyper-complex numbers unrestricted Pell and Pell-Lucas 2N-ons. We give generating functions and Binet formulas for these type of hyper-complex numbers. We also obtain some generalization of well – known identities such as Catalan’s, Cassini’s and d’Ocagne’s identities. | |
| dc.description.uri | https://doi.org/10.34088/kojose.1033409 | |
| dc.description.uri | https://dergipark.org.tr/tr/pub/kojose/issue/72606/1033409 | |
| dc.identifier.doi | 10.34088/kojose.1033409 | |
| dc.identifier.eissn | 2667-484X | |
| dc.identifier.endpage | 116 | |
| dc.identifier.openaire | doi_dedup___::25b67a070299afeb28381fccd9618a96 | |
| dc.identifier.orcid | 0000-0003-2297-4183 | |
| dc.identifier.orcid | 0000-0001-9964-5578 | |
| dc.identifier.startpage | 112 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12597/40152 | |
| dc.identifier.volume | 5 | |
| dc.publisher | Kocaeli Journal of Science and Engineering | |
| dc.relation.ispartof | Kocaeli Journal of Science and Engineering | |
| dc.rights | OPEN | |
| dc.subject | Matematik | |
| dc.subject | Pell sequence | |
| dc.subject | Pell-Lucas sequence | |
| dc.subject | Quaternion | |
| dc.subject | Octonion | |
| dc.subject | Sedenion | |
| dc.subject | Mathematical Sciences | |
| dc.title | Unrestricted Pell and Pell – Lucas 2N-ons | |
| dc.type | Article | |
| dspace.entity.type | Publication | |
| local.api.response | {"authors":[{"fullName":"Öznur BAYRAKÇI ÖZSOY","name":"Öznur","surname":"BAYRAKÇI ÖZSOY","rank":1,"pid":{"id":{"scheme":"orcid_pending","value":"0000-0003-2297-4183"},"provenance":null}},{"fullName":"Göksal BİLGİCİ","name":"Göksal","surname":"BİLGİCİ","rank":2,"pid":{"id":{"scheme":"orcid","value":"0000-0001-9964-5578"},"provenance":null}}],"openAccessColor":"gold","publiclyFunded":false,"type":"publication","language":{"code":"und","label":"Undetermined"},"countries":null,"subjects":[{"subject":{"scheme":"keyword","value":"Matematik"},"provenance":null},{"subject":{"scheme":"keyword","value":"Pell sequence;Pell-Lucas sequence;Quaternion;Octonion;Sedenion"},"provenance":null},{"subject":{"scheme":"FOS","value":"0103 physical sciences"},"provenance":null},{"subject":{"scheme":"FOS","value":"01 natural sciences"},"provenance":null},{"subject":{"scheme":"keyword","value":"Mathematical Sciences"},"provenance":null}],"mainTitle":"Unrestricted Pell and Pell – Lucas 2N-ons","subTitle":null,"descriptions":["<jats:p xml:lang=\"en\">In this study, we define unrestricted Pell and Pell – Lucas hyper-complex numbers. We choose arbitrary Pell and Pell – Lucas numbers for the coefficients of the ordered basis 〖{e〗_0,e_1,⋯,e_(N-1)} of hyper-complex 2^N-ons where N∈{0,1,2,3,4} and call these hyper-complex numbers unrestricted Pell and Pell-Lucas 2N-ons. We give generating functions and Binet formulas for these type of hyper-complex numbers. We also obtain some generalization of well – known identities such as Catalan’s, Cassini’s and d’Ocagne’s identities.</jats:p>"],"publicationDate":"2022-11-30","publisher":"Kocaeli Journal of Science and Engineering","embargoEndDate":null,"sources":["Crossref","Volume: 5, Issue: 2 112-116","2667-484X","Kocaeli Journal of Science and Engineering"],"formats":["application/pdf"],"contributors":null,"coverages":null,"bestAccessRight":{"code":"c_abf2","label":"OPEN","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":{"name":"Kocaeli Journal of Science and Engineering","issnPrinted":null,"issnOnline":"2667-484X","issnLinking":null,"ep":"116","iss":null,"sp":"112","vol":"5","edition":null,"conferencePlace":null,"conferenceDate":null},"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_dedup___::25b67a070299afeb28381fccd9618a96","originalIds":["10.34088/kojose.1033409","50|doiboost____|25b67a070299afeb28381fccd9618a96","50|tubitakulakb::db546c35250992c68c5be5c1d9307d3a","oai:dergipark.org.tr:article/1033409"],"pids":[{"scheme":"doi","value":"10.34088/kojose.1033409"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":0,"influence":2.5349236e-9,"popularity":1.8548826e-9,"impulse":0,"citationClass":"C5","influenceClass":"C5","impulseClass":"C5","popularityClass":"C5"}},"instances":[{"pids":[{"scheme":"doi","value":"10.34088/kojose.1033409"}],"type":"Article","urls":["https://doi.org/10.34088/kojose.1033409"],"publicationDate":"2022-11-30","refereed":"peerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.34088/kojose.1033409"}],"type":"Article","urls":["https://dergipark.org.tr/tr/pub/kojose/issue/72606/1033409"],"publicationDate":"2021-12-06","refereed":"nonPeerReviewed"}],"isGreen":false,"isInDiamondJournal":false} | |
| local.import.source | OpenAire |
