Yayın: FIBONACCI AND LUCAS NUMBERS AS PRODUCTS OF THEIR ARBITRARY TERMS
item.page.program
item.page.orgauthor
item.page.kuauthor
item.page.coauthor
Yazarlar
Danışman
Tarih
item.page.language
item.page.type
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Özet
This study presents all solutions to the Diophantine equations F_k=L_m L_n and L_k=F_m F_n. To be clear, the Fibonacci numbers that are the product of two arbitrary Lucas numbers and the Lucas numbers that are the product of two arbitrary Fibonacci numbers are determined herein. The results under consideration are proven by using the Dujella-Pethő lemma in coordination with Matveev's theorem. All common terms of the Fibonacci and Lucas numbers are determined. Further, the Lucas-square Fibonacci and Fibonacci-square Lucas numbers are given.
Açıklama
item.page.source
Yayınevi
Anadolu Universitesi Bilim ve Teknoloji Dergisi-A: Uygulamali Bilimler ve Muhendislik
