Yayın:
Aerodynamic Optimization of a UAV Wing subject to Weight, Geometric, Root Bending Moment, and Performance Constraints

dc.contributor.authorKörpe, Durmuş Sinan
dc.contributor.authorKanat, Öztürk Özdemir
dc.date.accessioned2026-01-04T13:30:25Z
dc.date.issued2019-10-16
dc.description.abstractIn this study, the optimization of a low-speed wing with functional constraints is discussed. The aerodynamic analysis tool developed by the coupling of the numerical nonlinear lifting-line method to Xfoil is used to obtain lift and drag coefficients of the baseline wing. The outcomes are compared with the results of the solver based on the nonlinear lifting-line theory implemented into XLFR5 and the transition shear stress transport model implemented into ANSYS-Fluent. The agreement between the results at the low and moderate angle of attack values is observed. The sequential quadratic programming algorithm of the MATLAB optimization toolbox is used for the solution of the constrained optimization problems. Three different optimization problems are solved. In the first problem, the maximization of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:msubsup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msubsup><mml:mo>/</mml:mo><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>D</mml:mi></mml:mrow></mml:msub></mml:math> is the objective function, while level flight condition at maximum <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:msubsup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msubsup><mml:mo>/</mml:mo><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>D</mml:mi></mml:mrow></mml:msub></mml:math> is defined as a constraint. The functional constraints related to the wing weight, the wing planform area, and the root bending moment are added to the first optimization problem, and the second optimization problem is constructed. The third optimization problem is obtained by adding the level flight condition and the available power constraints at the maximum speed and the level flight condition at the minimum speed of the baseline unmanned air vehicle to the second problem. It is demonstrated that defining the root bending moment, the wing area, and the available power constraints in the aerodynamic optimization problems leads to more realistic wing planform and airfoil shapes.
dc.description.urihttps://doi.org/10.1155/2019/3050824
dc.description.urihttps://downloads.hindawi.com/journals/ijae/2019/3050824.pdf
dc.description.urihttps://doaj.org/article/33be8a85df7641eea310ae111ae9526a
dc.description.urihttps://dx.doi.org/10.1155/2019/3050824
dc.identifier.doi10.1155/2019/3050824
dc.identifier.eissn1687-5974
dc.identifier.endpage14
dc.identifier.issn1687-5966
dc.identifier.openairedoi_dedup___::64f022c83437763b0de3be0445378a70
dc.identifier.orcid0000-0002-7968-4999
dc.identifier.orcid0000-0001-7914-0871
dc.identifier.scopus2-s2.0-85087107040
dc.identifier.startpage1
dc.identifier.urihttps://hdl.handle.net/20.500.12597/37539
dc.identifier.volume2019
dc.identifier.wos000493095700001
dc.language.isoeng
dc.publisherWiley
dc.relation.ispartofInternational Journal of Aerospace Engineering
dc.rightsOPEN
dc.subjectTL1-4050
dc.subjectMotor vehicles. Aeronautics. Astronautics
dc.titleAerodynamic Optimization of a UAV Wing subject to Weight, Geometric, Root Bending Moment, and Performance Constraints
dc.typeArticle
dspace.entity.typePublication
local.api.response{"authors":[{"fullName":"Durmuş Sinan Körpe","name":"Durmuş Sinan","surname":"Körpe","rank":1,"pid":{"id":{"scheme":"orcid","value":"0000-0002-7968-4999"},"provenance":null}},{"fullName":"Öztürk Özdemir Kanat","name":"Öztürk Özdemir","surname":"Kanat","rank":2,"pid":{"id":{"scheme":"orcid","value":"0000-0001-7914-0871"},"provenance":null}}],"openAccessColor":"gold","publiclyFunded":false,"type":"publication","language":{"code":"eng","label":"English"},"countries":null,"subjects":[{"subject":{"scheme":"FOS","value":"0203 mechanical engineering"},"provenance":null},{"subject":{"scheme":"FOS","value":"0103 physical sciences"},"provenance":null},{"subject":{"scheme":"keyword","value":"TL1-4050"},"provenance":null},{"subject":{"scheme":"FOS","value":"02 engineering and technology"},"provenance":null},{"subject":{"scheme":"FOS","value":"01 natural sciences"},"provenance":null},{"subject":{"scheme":"keyword","value":"Motor vehicles. Aeronautics. Astronautics"},"provenance":null}],"mainTitle":"Aerodynamic Optimization of a UAV Wing subject to Weight, Geometric, Root Bending Moment, and Performance Constraints","subTitle":null,"descriptions":["<jats:p>In this study, the optimization of a low-speed wing with functional constraints is discussed. The aerodynamic analysis tool developed by the coupling of the numerical nonlinear lifting-line method to Xfoil is used to obtain lift and drag coefficients of the baseline wing. The outcomes are compared with the results of the solver based on the nonlinear lifting-line theory implemented into XLFR5 and the transition shear stress transport model implemented into ANSYS-Fluent. The agreement between the results at the low and moderate angle of attack values is observed. The sequential quadratic programming algorithm of the MATLAB optimization toolbox is used for the solution of the constrained optimization problems. Three different optimization problems are solved. In the first problem, the maximization of <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\"><mml:msubsup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msubsup><mml:mo>/</mml:mo><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>D</mml:mi></mml:mrow></mml:msub></mml:math> is the objective function, while level flight condition at maximum <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\"><mml:msubsup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msubsup><mml:mo>/</mml:mo><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>D</mml:mi></mml:mrow></mml:msub></mml:math> is defined as a constraint. The functional constraints related to the wing weight, the wing planform area, and the root bending moment are added to the first optimization problem, and the second optimization problem is constructed. The third optimization problem is obtained by adding the level flight condition and the available power constraints at the maximum speed and the level flight condition at the minimum speed of the baseline unmanned air vehicle to the second problem. It is demonstrated that defining the root bending moment, the wing area, and the available power constraints in the aerodynamic optimization problems leads to more realistic wing planform and airfoil shapes.</jats:p>"],"publicationDate":"2019-10-16","publisher":"Wiley","embargoEndDate":null,"sources":["Crossref","International Journal of Aerospace Engineering, Vol 2019 (2019)"],"formats":["text/xhtml"],"contributors":null,"coverages":null,"bestAccessRight":{"code":"c_abf2","label":"OPEN","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":{"name":"International Journal of Aerospace Engineering","issnPrinted":"1687-5966","issnOnline":"1687-5974","issnLinking":null,"ep":"14","iss":null,"sp":"1","vol":"2019","edition":null,"conferencePlace":null,"conferenceDate":null},"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_dedup___::64f022c83437763b0de3be0445378a70","originalIds":["3050824","10.1155/2019/3050824","50|doiboost____|64f022c83437763b0de3be0445378a70","50|doajarticles::91381126b28868b5c9edd7c82c00c45b","oai:doaj.org/article:33be8a85df7641eea310ae111ae9526a","50|hindawi_publ::afa8440d029b4a138488d6b3290d372a","oai:hindawi.com:10.1155/2019/3050824","2980688212"],"pids":[{"scheme":"doi","value":"10.1155/2019/3050824"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":7,"influence":3.1510912e-9,"popularity":5.5381446e-9,"impulse":3,"citationClass":"C5","influenceClass":"C5","impulseClass":"C5","popularityClass":"C4"}},"instances":[{"pids":[{"scheme":"doi","value":"10.1155/2019/3050824"}],"license":"CC BY","type":"Article","urls":["https://doi.org/10.1155/2019/3050824"],"publicationDate":"2019-10-16","refereed":"peerReviewed"},{"pids":[{"scheme":"doi","value":"10.1155/2019/3050824"}],"license":"CC BY","type":"Article","urls":["https://downloads.hindawi.com/journals/ijae/2019/3050824.pdf"],"refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.1155/2019/3050824"}],"type":"Article","urls":["https://doaj.org/article/33be8a85df7641eea310ae111ae9526a"],"publicationDate":"2019-01-01","refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.1155/2019/3050824"}],"type":"Article","urls":["https://doi.org/10.1155/2019/3050824"],"publicationDate":"2019-01-01","refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"mag_id","value":"2980688212"},{"scheme":"doi","value":"10.1155/2019/3050824"}],"type":"Article","urls":["https://dx.doi.org/10.1155/2019/3050824"],"refereed":"nonPeerReviewed"}],"isGreen":false,"isInDiamondJournal":false}
local.import.sourceOpenAire
local.indexed.atWOS
local.indexed.atScopus

Dosyalar

Koleksiyonlar