Yayın: Some Special Identities for Jacobsthal and Jacobsthal-Lucas Generalized Octonions
| dc.contributor.author | Mert, Tuğba | |
| dc.contributor.author | Unal, Zafer | |
| dc.contributor.author | Tokeşer, Umit | |
| dc.contributor.author | Bilgici, Goksal | |
| dc.date.accessioned | 2026-01-04T16:10:47Z | |
| dc.date.issued | 2022-01-01 | |
| dc.description.abstract | Summary: We study on Jacobsthal and Jacobsthal-Lucas generalized octonions over the algebra \(\mathbb{O}(a, b, c)\) where \(a\), \(b\) and \(c\) are real numbers. We present Binet formulas for these types of octonions. Furthermore, we give some well-known identities such as Catalan's, Cassini's, d'Ocagne's identities and other special identities for Jacobsthal and Jacobsthal-Lucas generalized octonions. | |
| dc.description.uri | https://doi.org/10.22080/cjms.2020.18779.1490 | |
| dc.description.uri | https://zbmath.org/7582425 | |
| dc.description.uri | https://dx.doi.org/10.22080/cjms.2020.18779.1490 | |
| dc.identifier.doi | 10.22080/cjms.2020.18779.1490 | |
| dc.identifier.openaire | doi_dedup___::752bca352b8ca5895f15e41c6ea95466 | |
| dc.identifier.scopus | 2-s2.0-105023572156 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12597/39327 | |
| dc.publisher | University of Mazandaran, Babolsar | |
| dc.rights | CLOSED | |
| dc.subject | generalized octonion | |
| dc.subject | Jacobsthal octonion | |
| dc.subject | Jacobsthal-Lucas octonion | |
| dc.subject | Fibonacci and Lucas numbers and polynomials and generalizations | |
| dc.subject | Quaternion and other division algebras: arithmetic, zeta functions | |
| dc.title | Some Special Identities for Jacobsthal and Jacobsthal-Lucas Generalized Octonions | |
| dc.type | Article | |
| dspace.entity.type | Publication | |
| local.api.response | {"authors":[{"fullName":"Mert, Tuğba","name":"Tuğba","surname":"Mert","rank":1,"pid":null},{"fullName":"Unal, Zafer","name":"Zafer","surname":"Unal","rank":2,"pid":null},{"fullName":"Tokeşer, Umit","name":"Umit","surname":"Tokeşer","rank":3,"pid":null},{"fullName":"Bilgici, Goksal","name":"Goksal","surname":"Bilgici","rank":4,"pid":null}],"openAccessColor":null,"publiclyFunded":null,"type":"publication","language":{"code":"und","label":"Undetermined"},"countries":null,"subjects":[{"subject":{"scheme":"keyword","value":"generalized octonion"},"provenance":null},{"subject":{"scheme":"keyword","value":"Jacobsthal octonion"},"provenance":null},{"subject":{"scheme":"keyword","value":"Jacobsthal-Lucas octonion"},"provenance":null},{"subject":{"scheme":"keyword","value":"Fibonacci and Lucas numbers and polynomials and generalizations"},"provenance":null},{"subject":{"scheme":"keyword","value":"Quaternion and other division algebras: arithmetic, zeta functions"},"provenance":null}],"mainTitle":"Some Special Identities for Jacobsthal and Jacobsthal-Lucas Generalized Octonions","subTitle":null,"descriptions":["Summary: We study on Jacobsthal and Jacobsthal-Lucas generalized octonions over the algebra \\(\\mathbb{O}(a, b, c)\\) where \\(a\\), \\(b\\) and \\(c\\) are real numbers. We present Binet formulas for these types of octonions. Furthermore, we give some well-known identities such as Catalan's, Cassini's, d'Ocagne's identities and other special identities for Jacobsthal and Jacobsthal-Lucas generalized octonions."],"publicationDate":"2022-01-01","publisher":"University of Mazandaran, Babolsar","embargoEndDate":null,"sources":null,"formats":["application/xml"],"contributors":null,"coverages":null,"bestAccessRight":{"code":"c_14cb","label":"CLOSED","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":null,"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_dedup___::752bca352b8ca5895f15e41c6ea95466","originalIds":["oai:zbmath.org:7582425","50|c2b0b933574d::dbe4ed06ac22ad48d414b8cf63f5d837","10.22080/cjms.2020.18779.1490","50|medra_______::752bca352b8ca5895f15e41c6ea95466","3127110478"],"pids":[{"scheme":"doi","value":"10.22080/cjms.2020.18779.1490"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":0,"influence":2.5349236e-9,"popularity":1.8548826e-9,"impulse":0,"citationClass":"C5","influenceClass":"C5","impulseClass":"C5","popularityClass":"C5"}},"instances":[{"alternateIdentifiers":[{"scheme":"doi","value":"10.22080/cjms.2020.18779.1490"}],"type":"Article","urls":["https://doi.org/10.22080/cjms.2020.18779.1490","https://zbmath.org/7582425"],"publicationDate":"2022-01-01","refereed":"nonPeerReviewed"},{"pids":[{"scheme":"doi","value":"10.22080/cjms.2020.18779.1490"}],"type":"Article","urls":["https://doi.org/10.22080/cjms.2020.18779.1490"],"publicationDate":"2022-04-01","refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"mag_id","value":"3127110478"},{"scheme":"doi","value":"10.22080/cjms.2020.18779.1490"}],"type":"Other literature type","urls":["https://dx.doi.org/10.22080/cjms.2020.18779.1490"],"refereed":"nonPeerReviewed"}],"isGreen":null,"isInDiamondJournal":null} | |
| local.import.source | OpenAire | |
| local.indexed.at | Scopus |
