Yayın:
Some Special Identities for Jacobsthal and Jacobsthal-Lucas Generalized Octonions

dc.contributor.authorMert, Tuğba
dc.contributor.authorUnal, Zafer
dc.contributor.authorTokeşer, Umit
dc.contributor.authorBilgici, Goksal
dc.date.accessioned2026-01-04T16:10:47Z
dc.date.issued2022-01-01
dc.description.abstractSummary: We study on Jacobsthal and Jacobsthal-Lucas generalized octonions over the algebra \(\mathbb{O}(a, b, c)\) where \(a\), \(b\) and \(c\) are real numbers. We present Binet formulas for these types of octonions. Furthermore, we give some well-known identities such as Catalan's, Cassini's, d'Ocagne's identities and other special identities for Jacobsthal and Jacobsthal-Lucas generalized octonions.
dc.description.urihttps://doi.org/10.22080/cjms.2020.18779.1490
dc.description.urihttps://zbmath.org/7582425
dc.description.urihttps://dx.doi.org/10.22080/cjms.2020.18779.1490
dc.identifier.doi10.22080/cjms.2020.18779.1490
dc.identifier.openairedoi_dedup___::752bca352b8ca5895f15e41c6ea95466
dc.identifier.scopus2-s2.0-105023572156
dc.identifier.urihttps://hdl.handle.net/20.500.12597/39327
dc.publisherUniversity of Mazandaran, Babolsar
dc.rightsCLOSED
dc.subjectgeneralized octonion
dc.subjectJacobsthal octonion
dc.subjectJacobsthal-Lucas octonion
dc.subjectFibonacci and Lucas numbers and polynomials and generalizations
dc.subjectQuaternion and other division algebras: arithmetic, zeta functions
dc.titleSome Special Identities for Jacobsthal and Jacobsthal-Lucas Generalized Octonions
dc.typeArticle
dspace.entity.typePublication
local.api.response{"authors":[{"fullName":"Mert, Tuğba","name":"Tuğba","surname":"Mert","rank":1,"pid":null},{"fullName":"Unal, Zafer","name":"Zafer","surname":"Unal","rank":2,"pid":null},{"fullName":"Tokeşer, Umit","name":"Umit","surname":"Tokeşer","rank":3,"pid":null},{"fullName":"Bilgici, Goksal","name":"Goksal","surname":"Bilgici","rank":4,"pid":null}],"openAccessColor":null,"publiclyFunded":null,"type":"publication","language":{"code":"und","label":"Undetermined"},"countries":null,"subjects":[{"subject":{"scheme":"keyword","value":"generalized octonion"},"provenance":null},{"subject":{"scheme":"keyword","value":"Jacobsthal octonion"},"provenance":null},{"subject":{"scheme":"keyword","value":"Jacobsthal-Lucas octonion"},"provenance":null},{"subject":{"scheme":"keyword","value":"Fibonacci and Lucas numbers and polynomials and generalizations"},"provenance":null},{"subject":{"scheme":"keyword","value":"Quaternion and other division algebras: arithmetic, zeta functions"},"provenance":null}],"mainTitle":"Some Special Identities for Jacobsthal and Jacobsthal-Lucas Generalized Octonions","subTitle":null,"descriptions":["Summary: We study on Jacobsthal and Jacobsthal-Lucas generalized octonions over the algebra \\(\\mathbb{O}(a, b, c)\\) where \\(a\\), \\(b\\) and \\(c\\) are real numbers. We present Binet formulas for these types of octonions. Furthermore, we give some well-known identities such as Catalan's, Cassini's, d'Ocagne's identities and other special identities for Jacobsthal and Jacobsthal-Lucas generalized octonions."],"publicationDate":"2022-01-01","publisher":"University of Mazandaran, Babolsar","embargoEndDate":null,"sources":null,"formats":["application/xml"],"contributors":null,"coverages":null,"bestAccessRight":{"code":"c_14cb","label":"CLOSED","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":null,"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_dedup___::752bca352b8ca5895f15e41c6ea95466","originalIds":["oai:zbmath.org:7582425","50|c2b0b933574d::dbe4ed06ac22ad48d414b8cf63f5d837","10.22080/cjms.2020.18779.1490","50|medra_______::752bca352b8ca5895f15e41c6ea95466","3127110478"],"pids":[{"scheme":"doi","value":"10.22080/cjms.2020.18779.1490"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":0,"influence":2.5349236e-9,"popularity":1.8548826e-9,"impulse":0,"citationClass":"C5","influenceClass":"C5","impulseClass":"C5","popularityClass":"C5"}},"instances":[{"alternateIdentifiers":[{"scheme":"doi","value":"10.22080/cjms.2020.18779.1490"}],"type":"Article","urls":["https://doi.org/10.22080/cjms.2020.18779.1490","https://zbmath.org/7582425"],"publicationDate":"2022-01-01","refereed":"nonPeerReviewed"},{"pids":[{"scheme":"doi","value":"10.22080/cjms.2020.18779.1490"}],"type":"Article","urls":["https://doi.org/10.22080/cjms.2020.18779.1490"],"publicationDate":"2022-04-01","refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"mag_id","value":"3127110478"},{"scheme":"doi","value":"10.22080/cjms.2020.18779.1490"}],"type":"Other literature type","urls":["https://dx.doi.org/10.22080/cjms.2020.18779.1490"],"refereed":"nonPeerReviewed"}],"isGreen":null,"isInDiamondJournal":null}
local.import.sourceOpenAire
local.indexed.atScopus

Dosyalar

Koleksiyonlar