Yayın:
New approximate analytical solutions for the nonlinear fractional Schrödinger equation with second‐order spatio‐temporal dispersion via double Laplace transform method

dc.contributor.authorKaabar, Mohammed K. A.
dc.contributor.authorMartínez, Francisco
dc.contributor.authorGómez‐Aguilar, José Francisco
dc.contributor.authorGhanbari, Behzad
dc.contributor.authorKaplan, Melike
dc.contributor.authorGünerhan, Hatira
dc.date.accessioned2026-01-04T15:23:23Z
dc.date.issued2021-05-27
dc.description.abstractIn this paper, a modified nonlinear Schrödinger equation with spatiotemporal dispersion is formulated in the senses of Caputo fractional derivative and conformable derivative. A new generalized double Laplace transform coupled with Adomian decomposition method has been defined and applied to solve the newly formulated nonlinear Schrödinger equation with spatiotemporal dispersion. The approximate analytical solutions are obtained and compared with each other graphically.
dc.description.urihttps://doi.org/10.1002/mma.7476
dc.description.urihttp://arxiv.org/pdf/2010.10977
dc.description.urihttps://zbmath.org/7393701
dc.description.urihttps://dx.doi.org/10.1002/mma.7476
dc.identifier.doi10.1002/mma.7476
dc.identifier.eissn1099-1476
dc.identifier.endpage11156
dc.identifier.issn0170-4214
dc.identifier.openairedoi_dedup___::eccafaab2216294c3fdc3618a41707f9
dc.identifier.orcid0000-0003-2260-0341
dc.identifier.orcid0000-0002-3733-1239
dc.identifier.orcid0000-0001-9403-3767
dc.identifier.orcid0000-0003-0158-168x
dc.identifier.orcid0000-0001-5700-9127
dc.identifier.orcid0000-0002-7802-477x
dc.identifier.scopus2-s2.0-85106739228
dc.identifier.startpage11138
dc.identifier.urihttps://hdl.handle.net/20.500.12597/38790
dc.identifier.volume44
dc.identifier.wos000655368500001
dc.language.isoeng
dc.publisherWiley
dc.relation.ispartofMathematical Methods in the Applied Sciences
dc.rightsOPEN
dc.subjectnonlinear fractional Schrödinger equation
dc.subjectCaputo fractional derivative
dc.subjectdouble Laplace transform
dc.subjectFractional derivatives and integrals
dc.subjectNLS equations (nonlinear Schrödinger equations)
dc.subjectconformable derivative
dc.titleNew approximate analytical solutions for the nonlinear fractional Schrödinger equation with second‐order spatio‐temporal dispersion via double Laplace transform method
dc.typeArticle
dspace.entity.typePublication
local.api.response{"authors":[{"fullName":"Mohammed K. A. Kaabar","name":"Mohammed K. A.","surname":"Kaabar","rank":1,"pid":{"id":{"scheme":"orcid_pending","value":"0000-0003-2260-0341"},"provenance":null}},{"fullName":"Francisco Martínez","name":"Francisco","surname":"Martínez","rank":2,"pid":{"id":{"scheme":"orcid","value":"0000-0002-3733-1239"},"provenance":null}},{"fullName":"José Francisco Gómez‐Aguilar","name":"José Francisco","surname":"Gómez‐Aguilar","rank":3,"pid":{"id":{"scheme":"orcid","value":"0000-0001-9403-3767"},"provenance":null}},{"fullName":"Behzad Ghanbari","name":"Behzad","surname":"Ghanbari","rank":4,"pid":{"id":{"scheme":"orcid_pending","value":"0000-0003-0158-168x"},"provenance":null}},{"fullName":"Melike Kaplan","name":"Melike","surname":"Kaplan","rank":5,"pid":{"id":{"scheme":"orcid","value":"0000-0001-5700-9127"},"provenance":null}},{"fullName":"Hatira Günerhan","name":"Hatira","surname":"Günerhan","rank":6,"pid":{"id":{"scheme":"orcid","value":"0000-0002-7802-477x"},"provenance":null}}],"openAccessColor":"bronze","publiclyFunded":false,"type":"publication","language":{"code":"eng","label":"English"},"countries":null,"subjects":[{"subject":{"scheme":"keyword","value":"nonlinear fractional Schrödinger equation"},"provenance":null},{"subject":{"scheme":"keyword","value":"Caputo fractional derivative"},"provenance":null},{"subject":{"scheme":"keyword","value":"double Laplace transform"},"provenance":null},{"subject":{"scheme":"keyword","value":"Fractional derivatives and integrals"},"provenance":null},{"subject":{"scheme":"keyword","value":"NLS equations (nonlinear Schrödinger equations)"},"provenance":null},{"subject":{"scheme":"keyword","value":"conformable derivative"},"provenance":null},{"subject":{"scheme":"FOS","value":"0101 mathematics"},"provenance":null},{"subject":{"scheme":"FOS","value":"01 natural sciences"},"provenance":null}],"mainTitle":"New approximate analytical solutions for the nonlinear fractional Schrödinger equation with second‐order spatio‐temporal dispersion via double Laplace transform method","subTitle":null,"descriptions":["<jats:p>In this paper, a modified nonlinear Schrödinger equation with spatiotemporal dispersion is formulated in the senses of Caputo fractional derivative and conformable derivative. A new generalized double Laplace transform coupled with Adomian decomposition method has been defined and applied to solve the newly formulated nonlinear Schrödinger equation with spatiotemporal dispersion. The approximate analytical solutions are obtained and compared with each other graphically.</jats:p>"],"publicationDate":"2021-05-27","publisher":"Wiley","embargoEndDate":null,"sources":["Crossref"],"formats":["application/xml"],"contributors":null,"coverages":null,"bestAccessRight":{"code":"c_abf2","label":"OPEN","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":{"name":"Mathematical Methods in the Applied Sciences","issnPrinted":"0170-4214","issnOnline":"1099-1476","issnLinking":null,"ep":"11156","iss":null,"sp":"11138","vol":"44","edition":null,"conferencePlace":null,"conferenceDate":null},"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_dedup___::eccafaab2216294c3fdc3618a41707f9","originalIds":["10.1002/mma.7476","50|doiboost____|eccafaab2216294c3fdc3618a41707f9","oai:zbmath.org:7393701","50|c2b0b933574d::cbad2408fe507a8dbf53e33904d100ef","3170717986"],"pids":[{"scheme":"doi","value":"10.1002/mma.7476"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":48,"influence":4.9130646e-9,"popularity":4.0640288e-8,"impulse":46,"citationClass":"C4","influenceClass":"C4","impulseClass":"C3","popularityClass":"C3"}},"instances":[{"pids":[{"scheme":"doi","value":"10.1002/mma.7476"}],"license":"Wiley Online Library User Agreement","type":"Article","urls":["https://doi.org/10.1002/mma.7476"],"publicationDate":"2021-05-27","refereed":"peerReviewed"},{"pids":[{"scheme":"doi","value":"10.1002/mma.7476"}],"type":"Article","urls":["http://arxiv.org/pdf/2010.10977"],"refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.1002/mma.7476"}],"type":"Article","urls":["https://doi.org/10.1002/mma.7476","https://zbmath.org/7393701"],"publicationDate":"2021-01-01","refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.1002/mma.7476"},{"scheme":"mag_id","value":"3170717986"}],"type":"Article","urls":["https://dx.doi.org/10.1002/mma.7476"],"refereed":"nonPeerReviewed"}],"isGreen":false,"isInDiamondJournal":false}
local.import.sourceOpenAire
local.indexed.atWOS
local.indexed.atScopus

Dosyalar

Koleksiyonlar