Yayın: Principal Functions of Nonselfadjoint Discrete Dirac Equations with Spectral Parameter in Boundary Conditions
| dc.contributor.author | Aygar, Yelda | |
| dc.contributor.author | Olgun, Murat | |
| dc.contributor.author | Koprubasi, Turhan | |
| dc.date.accessioned | 2026-01-02T20:03:50Z | |
| dc.date.issued | 2012-01-01 | |
| dc.description.abstract | Let L denote the operator generated in ℓ2(ℕ, ℂ2) by , , n∈ℕ, and the boundary condition , where (an) , (bn), (pn), and (qn) , n∈ℕ are complex sequences, γi, βi∈ℂ , i = 0,1, and λ is an eigenparameter. In this paper we investigated the principal functions corresponding to the eigenvalues and the spectral singularities of L. | |
| dc.description.uri | https://doi.org/10.1155/2012/924628 | |
| dc.description.uri | http://downloads.hindawi.com/journals/aaa/2012/924628.pdf | |
| dc.description.uri | https://zbmath.org/6116473 | |
| dc.description.uri | https://doaj.org/article/0cb23d3fc5c9452c85835855bbfae642 | |
| dc.description.uri | https://dx.doi.org/10.1155/2012/924628 | |
| dc.description.uri | http://projecteuclid.org/euclid.aaa/1365168324 | |
| dc.identifier.doi | 10.1155/2012/924628 | |
| dc.identifier.eissn | 1687-0409 | |
| dc.identifier.issn | 1085-3375 | |
| dc.identifier.openaire | doi_dedup___::23ab0ad3c945547237baa387b677db7c | |
| dc.identifier.orcid | 0000-0002-8660-5435 | |
| dc.identifier.scopus | 2-s2.0-84868694074 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12597/35553 | |
| dc.identifier.volume | 2012 | |
| dc.identifier.wos | 000310620300001 | |
| dc.language.iso | eng | |
| dc.publisher | Wiley | |
| dc.relation.ispartof | Abstract and Applied Analysis | |
| dc.rights | OPEN | |
| dc.subject | QA1-939 | |
| dc.subject | Discrete version of topics in analysis | |
| dc.subject | nonselfadjoint discrete Dirac equations | |
| dc.subject | Mathematics | |
| dc.title | Principal Functions of Nonselfadjoint Discrete Dirac Equations with Spectral Parameter in Boundary Conditions | |
| dc.type | Article | |
| dspace.entity.type | Publication | |
| local.api.response | {"authors":[{"fullName":"Aygar, Yelda","name":"Yelda","surname":"Aygar","rank":1,"pid":null},{"fullName":"Olgun, Murat","name":"Murat","surname":"Olgun","rank":2,"pid":{"id":{"scheme":"orcid","value":"0000-0002-8660-5435"},"provenance":null}},{"fullName":"Koprubasi, Turhan","name":"Turhan","surname":"Koprubasi","rank":3,"pid":null}],"openAccessColor":"gold","publiclyFunded":false,"type":"publication","language":{"code":"eng","label":"English"},"countries":null,"subjects":[{"subject":{"scheme":"keyword","value":"QA1-939"},"provenance":null},{"subject":{"scheme":"keyword","value":"Discrete version of topics in analysis"},"provenance":null},{"subject":{"scheme":"keyword","value":"nonselfadjoint discrete Dirac equations"},"provenance":null},{"subject":{"scheme":"FOS","value":"0101 mathematics"},"provenance":null},{"subject":{"scheme":"FOS","value":"01 natural sciences"},"provenance":null},{"subject":{"scheme":"keyword","value":"Mathematics"},"provenance":null}],"mainTitle":"Principal Functions of Nonselfadjoint Discrete Dirac Equations with Spectral Parameter in Boundary Conditions","subTitle":null,"descriptions":["<jats:p>Let <jats:italic>L</jats:italic> denote the operator generated in <jats:italic>ℓ</jats:italic><jats:sub>2</jats:sub>(<jats:italic>ℕ</jats:italic>, <jats:italic>ℂ</jats:italic><jats:sup>2</jats:sup>) by , , <jats:italic>n</jats:italic><jats:italic>∈</jats:italic><jats:italic>ℕ</jats:italic>, and the boundary condition , where (<jats:italic>a</jats:italic><jats:sub><jats:italic>n</jats:italic></jats:sub>) , (<jats:italic>b</jats:italic><jats:sub><jats:italic>n</jats:italic></jats:sub>), (<jats:italic>p</jats:italic><jats:sub><jats:italic>n</jats:italic></jats:sub>), and (<jats:italic>q</jats:italic><jats:sub><jats:italic>n</jats:italic></jats:sub>) , <jats:italic>n</jats:italic><jats:italic>∈</jats:italic><jats:italic>ℕ</jats:italic> are complex sequences, <jats:italic>γ</jats:italic><jats:sub><jats:italic>i</jats:italic></jats:sub>, <jats:italic>β</jats:italic><jats:sub><jats:italic>i</jats:italic></jats:sub><jats:italic>∈</jats:italic><jats:italic>ℂ</jats:italic> , <jats:italic>i</jats:italic> = 0,1, and <jats:italic>λ</jats:italic> is an eigenparameter. In this paper we investigated the principal functions corresponding to the eigenvalues and the spectral singularities of <jats:italic>L</jats:italic>.</jats:p>"],"publicationDate":"2012-01-01","publisher":"Wiley","embargoEndDate":null,"sources":["Crossref","Abstract and Applied Analysis, Vol 2012 (2012)","Abstr. Appl. Anal."],"formats":["application/xml","text/xhtml","application/pdf"],"contributors":null,"coverages":null,"bestAccessRight":{"code":"c_abf2","label":"OPEN","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":{"name":"Abstract and Applied Analysis","issnPrinted":"1085-3375","issnOnline":"1687-0409","issnLinking":null,"ep":null,"iss":null,"sp":null,"vol":"2012","edition":null,"conferencePlace":null,"conferenceDate":null},"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_dedup___::23ab0ad3c945547237baa387b677db7c","originalIds":["10.1155/2012/924628","50|doiboost____|23ab0ad3c945547237baa387b677db7c","50|c2b0b933574d::7578a51f20d14869c26d6eb43b5f4642","oai:zbmath.org:6116473","oai:doaj.org/article:0cb23d3fc5c9452c85835855bbfae642","50|doajarticles::2c6623907955b55fd21042b33dba98ec","50|hindawi_publ::4e8b52e7aa99bd50ca9222f708253c55","oai:hindawi.com:10.1155/2012/924628","2169715144","50|project_eucl::31231b77769a8e3e0a9c6bfd1abf1886","oai:CULeuclid:euclid.aaa/1365168324"],"pids":[{"scheme":"doi","value":"10.1155/2012/924628"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":3,"influence":2.925739e-9,"popularity":1.4635534e-9,"impulse":1,"citationClass":"C5","influenceClass":"C5","impulseClass":"C5","popularityClass":"C5"}},"instances":[{"pids":[{"scheme":"doi","value":"10.1155/2012/924628"}],"license":"CC BY","type":"Article","urls":["https://doi.org/10.1155/2012/924628"],"publicationDate":"2012-01-01","refereed":"peerReviewed"},{"pids":[{"scheme":"doi","value":"10.1155/2012/924628"}],"license":"CC BY","type":"Article","urls":["http://downloads.hindawi.com/journals/aaa/2012/924628.pdf"],"refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.1155/2012/924628"}],"type":"Article","urls":["https://zbmath.org/6116473","https://doi.org/10.1155/2012/924628"],"publicationDate":"2012-01-01","refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.1155/2012/924628"}],"type":"Article","urls":["https://doaj.org/article/0cb23d3fc5c9452c85835855bbfae642"],"publicationDate":"2012-01-01","refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.1155/2012/924628"}],"type":"Article","urls":["https://doi.org/10.1155/2012/924628"],"publicationDate":"2012-01-01","refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"mag_id","value":"2169715144"},{"scheme":"doi","value":"10.1155/2012/924628"}],"type":"Article","urls":["https://dx.doi.org/10.1155/2012/924628"],"refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.1155/2012/924628"}],"type":"Other literature type","urls":["http://projecteuclid.org/euclid.aaa/1365168324"],"publicationDate":"2012-01-01","refereed":"nonPeerReviewed"}],"isGreen":false,"isInDiamondJournal":false} | |
| local.import.source | OpenAire | |
| local.indexed.at | WOS | |
| local.indexed.at | Scopus |
