Yayın: Topologically indistinguishable relations and separation axioms
| dc.contributor.author | Sibel Demiralp | |
| dc.contributor.author | Tareq M. Al-shami | |
| dc.contributor.author | Fuad A. Abushaheen | |
| dc.contributor.author | Alaa M. Abd El-latif | |
| dc.date.accessioned | 2026-01-04T19:54:12Z | |
| dc.date.issued | 2024-01-01 | |
| dc.description.abstract | <abstract><p>This study focuses on defining separation axioms for sets without an inherent topological structure. By utilizing a mapping to relate such sets to a topological space, we first define a distinguishable relation over the universal set with respect to the neighborhood systems inspired by a topology of the co-domain set and elucidate its basic properties. To facilitate the way of discovering this distinguishable relation, we initiate a color technique for the equivalence classes inspired by a given topology. Also, we provide an algorithm to determine distinguishable members (or objects) under study. Then, we establish a framework for introducing separation properties within these structureless sets and examine their master characterizations. To better understand the obtained results and relationships, we display some illustrative instances.</p></abstract> | |
| dc.description.uri | https://doi.org/10.3934/math.2024758 | |
| dc.description.uri | https://dx.doi.org/10.60692/q98bx-teg46 | |
| dc.description.uri | https://dx.doi.org/10.60692/kvwpa-0dy33 | |
| dc.description.uri | https://doaj.org/article/eaa8d39d6d424278bb824cb2d6e8c39c | |
| dc.identifier.doi | 10.3934/math.2024758 | |
| dc.identifier.endpage | 15723 | |
| dc.identifier.issn | 2473-6988 | |
| dc.identifier.openaire | doi_dedup___::a2484784bc7db5f7e9e7f55be45c197a | |
| dc.identifier.orcid | 0000-0002-3977-587x | |
| dc.identifier.orcid | 0000-0002-8074-1102 | |
| dc.identifier.orcid | 0000-0003-0179-2831 | |
| dc.identifier.scopus | 2-s2.0-85191751625 | |
| dc.identifier.startpage | 15701 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12597/41445 | |
| dc.identifier.volume | 9 | |
| dc.identifier.wos | 001219715800001 | |
| dc.publisher | American Institute of Mathematical Sciences (AIMS) | |
| dc.relation.ispartof | AIMS Mathematics | |
| dc.rights | OPEN | |
| dc.subject | Rough Sets Theory and Applications | |
| dc.subject | Social Sciences | |
| dc.subject | Geometry | |
| dc.subject | Separation axiom | |
| dc.subject | Management Science and Operations Research | |
| dc.subject | Decision Sciences | |
| dc.subject | Automata Theory | |
| dc.subject | Fuzzy Logic and Residuated Lattices | |
| dc.subject | Topological Spaces | |
| dc.subject | QA1-939 | |
| dc.subject | FOS: Mathematics | |
| dc.subject | Axiom | |
| dc.subject | equivalence relation | |
| dc.subject | Probabilistic Rough Sets | |
| dc.subject | Mathematical economics | |
| dc.subject | Statistics | |
| dc.subject | Application of Soft Set Theory in Decision Making | |
| dc.subject | Association Rules Mining | |
| dc.subject | Probability Theory | |
| dc.subject | Computer science | |
| dc.subject | Computational Theory and Mathematics | |
| dc.subject | Combinatorics | |
| dc.subject | separation axioms | |
| dc.subject | Computer Science | |
| dc.subject | Physical Sciences | |
| dc.subject | Separation (statistics) | |
| dc.subject | $ f\mathcal{t} $-topological distinguishability | |
| dc.subject | Mathematics | |
| dc.subject.sdg | 10. No inequality | |
| dc.subject.sdg | 4. Education | |
| dc.subject.sdg | 15. Life on land | |
| dc.subject.sdg | 16. Peace & justice | |
| dc.title | Topologically indistinguishable relations and separation axioms | |
| dc.type | Article | |
| dspace.entity.type | Publication | |
| local.api.response | {"authors":[{"fullName":"Sibel Demiralp","name":null,"surname":"Sibel Demiralp","rank":1,"pid":{"id":{"scheme":"orcid_pending","value":"0000-0002-3977-587x"},"provenance":null}},{"fullName":"Tareq M. Al-shami","name":null,"surname":"Tareq M. Al-shami","rank":2,"pid":{"id":{"scheme":"orcid_pending","value":"0000-0002-8074-1102"},"provenance":null}},{"fullName":"Fuad A. Abushaheen","name":null,"surname":"Fuad A. Abushaheen","rank":3,"pid":null},{"fullName":"Alaa M. Abd El-latif","name":null,"surname":"Alaa M. Abd El-latif","rank":4,"pid":{"id":{"scheme":"orcid","value":"0000-0003-0179-2831"},"provenance":null}}],"openAccessColor":"gold","publiclyFunded":false,"type":"publication","language":{"code":"und","label":"Undetermined"},"countries":null,"subjects":[{"subject":{"scheme":"keyword","value":"Rough Sets Theory and Applications"},"provenance":null},{"subject":{"scheme":"keyword","value":"Social Sciences"},"provenance":null},{"subject":{"scheme":"keyword","value":"Geometry"},"provenance":null},{"subject":{"scheme":"FOS","value":"02 engineering and technology"},"provenance":null},{"subject":{"scheme":"keyword","value":"Separation axiom"},"provenance":null},{"subject":{"scheme":"keyword","value":"Management Science and Operations Research"},"provenance":null},{"subject":{"scheme":"FOS","value":"01 natural sciences"},"provenance":null},{"subject":{"scheme":"keyword","value":"Decision Sciences"},"provenance":null},{"subject":{"scheme":"keyword","value":"Automata Theory"},"provenance":null},{"subject":{"scheme":"keyword","value":"Fuzzy Logic and Residuated Lattices"},"provenance":null},{"subject":{"scheme":"keyword","value":"Topological Spaces"},"provenance":null},{"subject":{"scheme":"keyword","value":"QA1-939"},"provenance":null},{"subject":{"scheme":"FOS","value":"0202 electrical engineering, electronic engineering, information engineering"},"provenance":null},{"subject":{"scheme":"keyword","value":"FOS: Mathematics"},"provenance":null},{"subject":{"scheme":"FOS","value":"0101 mathematics"},"provenance":null},{"subject":{"scheme":"SDG","value":"10. No inequality"},"provenance":null},{"subject":{"scheme":"keyword","value":"Axiom"},"provenance":null},{"subject":{"scheme":"keyword","value":"equivalence relation"},"provenance":null},{"subject":{"scheme":"keyword","value":"Probabilistic Rough Sets"},"provenance":null},{"subject":{"scheme":"keyword","value":"Mathematical economics"},"provenance":null},{"subject":{"scheme":"SDG","value":"4. Education"},"provenance":null},{"subject":{"scheme":"keyword","value":"Statistics"},"provenance":null},{"subject":{"scheme":"keyword","value":"Application of Soft Set Theory in Decision Making"},"provenance":null},{"subject":{"scheme":"keyword","value":"Association Rules Mining"},"provenance":null},{"subject":{"scheme":"SDG","value":"15. Life on land"},"provenance":null},{"subject":{"scheme":"keyword","value":"Probability Theory"},"provenance":null},{"subject":{"scheme":"SDG","value":"16. Peace & justice"},"provenance":null},{"subject":{"scheme":"keyword","value":"Computer science"},"provenance":null},{"subject":{"scheme":"keyword","value":"Computational Theory and Mathematics"},"provenance":null},{"subject":{"scheme":"keyword","value":"Combinatorics"},"provenance":null},{"subject":{"scheme":"keyword","value":"separation axioms"},"provenance":null},{"subject":{"scheme":"keyword","value":"Computer Science"},"provenance":null},{"subject":{"scheme":"keyword","value":"Physical Sciences"},"provenance":null},{"subject":{"scheme":"keyword","value":"Separation (statistics)"},"provenance":null},{"subject":{"scheme":"keyword","value":"$ f\\mathcal{t} $-topological distinguishability"},"provenance":null},{"subject":{"scheme":"keyword","value":"Mathematics"},"provenance":null}],"mainTitle":"Topologically indistinguishable relations and separation axioms","subTitle":null,"descriptions":["<jats:p xml:lang=\"fr\"><abstract><p>This study focuses on defining separation axioms for sets without an inherent topological structure. By utilizing a mapping to relate such sets to a topological space, we first define a distinguishable relation over the universal set with respect to the neighborhood systems inspired by a topology of the co-domain set and elucidate its basic properties. To facilitate the way of discovering this distinguishable relation, we initiate a color technique for the equivalence classes inspired by a given topology. Also, we provide an algorithm to determine distinguishable members (or objects) under study. Then, we establish a framework for introducing separation properties within these structureless sets and examine their master characterizations. To better understand the obtained results and relationships, we display some illustrative instances.</p></abstract></jats:p>"],"publicationDate":"2024-01-01","publisher":"American Institute of Mathematical Sciences (AIMS)","embargoEndDate":null,"sources":["Crossref","AIMS Mathematics, Vol 9, Iss 6, Pp 15701-15723 (2024)"],"formats":null,"contributors":null,"coverages":null,"bestAccessRight":{"code":"c_abf2","label":"OPEN","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":{"name":"AIMS Mathematics","issnPrinted":"2473-6988","issnOnline":null,"issnLinking":null,"ep":"15723","iss":null,"sp":"15701","vol":"9","edition":null,"conferencePlace":null,"conferenceDate":null},"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_dedup___::a2484784bc7db5f7e9e7f55be45c197a","originalIds":["10.3934/math.2024758","50|doiboost____|a2484784bc7db5f7e9e7f55be45c197a","50|datacite____::48c339b8c3ac8f3d75883a00263a3cca","10.60692/q98bx-teg46","50|datacite____::514ea0c9859b09e5a2e5005795577fed","10.60692/kvwpa-0dy33","oai:doaj.org/article:eaa8d39d6d424278bb824cb2d6e8c39c","50|doajarticles::9d0d2f9d7dc6fcd9c2d0fc5ca4d23906"],"pids":[{"scheme":"doi","value":"10.3934/math.2024758"},{"scheme":"doi","value":"10.60692/q98bx-teg46"},{"scheme":"doi","value":"10.60692/kvwpa-0dy33"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":1,"influence":2.5900306e-9,"popularity":3.2544214e-9,"impulse":1,"citationClass":"C5","influenceClass":"C5","impulseClass":"C5","popularityClass":"C5"}},"instances":[{"pids":[{"scheme":"doi","value":"10.3934/math.2024758"}],"type":"Article","urls":["https://doi.org/10.3934/math.2024758"],"publicationDate":"2024-01-01","refereed":"peerReviewed"},{"pids":[{"scheme":"doi","value":"10.60692/q98bx-teg46"}],"type":"Other literature type","urls":["https://dx.doi.org/10.60692/q98bx-teg46"],"publicationDate":"2024-01-01","refereed":"nonPeerReviewed"},{"pids":[{"scheme":"doi","value":"10.60692/kvwpa-0dy33"}],"type":"Other literature type","urls":["https://dx.doi.org/10.60692/kvwpa-0dy33"],"publicationDate":"2024-01-01","refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.3934/math.2024758"}],"type":"Article","urls":["https://doaj.org/article/eaa8d39d6d424278bb824cb2d6e8c39c"],"publicationDate":"2024-04-01","refereed":"nonPeerReviewed"}],"isGreen":false,"isInDiamondJournal":false} | |
| local.import.source | OpenAire | |
| local.indexed.at | WOS | |
| local.indexed.at | Scopus |
