Yayın:
Some unrestricted Fibonacci and Lucas hyper-complex numbers

dc.contributor.authorBilgici, Göksal
dc.contributor.authorDaşdemir, Ahmet
dc.date.accessioned2026-01-06T06:07:55Z
dc.date.issued2020-09-23
dc.description.abstractA number of studies have investigated the Fibonacci quaternions and octonions that include consecutive terms of the Fibonacci sequence. This paper presents a new generalization of Fibonacci quaternions, octonions and sedenions, where non-consecutive Fibonacci numbers are used. We present the Binet formulas, generating functions and some identities for these new types of hyper-complex numbers.
dc.description.urihttps://doi.org/10.12697/acutm.2020.24.03
dc.description.urihttps://ojs.utlib.ee/index.php/ACUTM/article/download/ACUTM.2020.24.03/12212
dc.description.urihttps://zbmath.org/7357529
dc.description.urihttps://dx.doi.org/10.12697/acutm.2020.24.03
dc.identifier.doi10.12697/acutm.2020.24.03
dc.identifier.eissn2228-4699
dc.identifier.endpage48
dc.identifier.issn1406-2283
dc.identifier.openairedoi_dedup___::f4d435e04a0d62537ce4969c04bbc7fe
dc.identifier.orcid0000-0001-9964-5578
dc.identifier.orcid0000-0001-8352-2020
dc.identifier.scopus2-s2.0-85091383829
dc.identifier.startpage37
dc.identifier.urihttps://hdl.handle.net/20.500.12597/43920
dc.identifier.volume24
dc.identifier.wos000575207200003
dc.publisherUniversity of Tartu
dc.relation.ispartofActa et Commentationes Universitatis Tartuensis de Mathematica
dc.rightsOPEN
dc.subjectFibonacci and Lucas numbers and polynomials and generalizations
dc.subjectFibonacci octonion
dc.subjectFibonacci sedenion
dc.subjectFibonacci quaternion
dc.titleSome unrestricted Fibonacci and Lucas hyper-complex numbers
dc.typeArticle
dspace.entity.typePublication
local.api.response{"authors":[{"fullName":"Göksal Bilgici","name":"Göksal","surname":"Bilgici","rank":1,"pid":{"id":{"scheme":"orcid","value":"0000-0001-9964-5578"},"provenance":null}},{"fullName":"Ahmet Daşdemir","name":"Ahmet","surname":"Daşdemir","rank":2,"pid":{"id":{"scheme":"orcid","value":"0000-0001-8352-2020"},"provenance":null}}],"openAccessColor":"gold","publiclyFunded":false,"type":"publication","language":{"code":"und","label":"Undetermined"},"countries":null,"subjects":[{"subject":{"scheme":"FOS","value":"0103 physical sciences"},"provenance":null},{"subject":{"scheme":"keyword","value":"Fibonacci and Lucas numbers and polynomials and generalizations"},"provenance":null},{"subject":{"scheme":"keyword","value":"Fibonacci octonion"},"provenance":null},{"subject":{"scheme":"FOS","value":"0101 mathematics"},"provenance":null},{"subject":{"scheme":"keyword","value":"Fibonacci sedenion"},"provenance":null},{"subject":{"scheme":"keyword","value":"Fibonacci quaternion"},"provenance":null},{"subject":{"scheme":"FOS","value":"01 natural sciences"},"provenance":null}],"mainTitle":"Some unrestricted Fibonacci and Lucas hyper-complex numbers","subTitle":null,"descriptions":["<jats:p>A number of studies have investigated the Fibonacci quaternions and octonions that include consecutive terms of the Fibonacci sequence. This paper presents a new generalization of Fibonacci quaternions, octonions and sedenions, where non-consecutive Fibonacci numbers are used. We present the Binet formulas, generating functions and some identities for these new types of hyper-complex numbers.</jats:p>"],"publicationDate":"2020-09-23","publisher":"University of Tartu","embargoEndDate":null,"sources":["Crossref"],"formats":["application/xml"],"contributors":null,"coverages":null,"bestAccessRight":{"code":"c_abf2","label":"OPEN","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":{"name":"Acta et Commentationes Universitatis Tartuensis de Mathematica","issnPrinted":"1406-2283","issnOnline":"2228-4699","issnLinking":null,"ep":"48","iss":null,"sp":"37","vol":"24","edition":null,"conferencePlace":null,"conferenceDate":null},"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_dedup___::f4d435e04a0d62537ce4969c04bbc7fe","originalIds":["10.12697/acutm.2020.24.03","50|doiboost____|f4d435e04a0d62537ce4969c04bbc7fe","50|c2b0b933574d::90f2b689c0cd44027037739147ec61fd","oai:zbmath.org:7357529","3088539718"],"pids":[{"scheme":"doi","value":"10.12697/acutm.2020.24.03"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":2,"influence":2.643746e-9,"popularity":2.952375e-9,"impulse":1,"citationClass":"C5","influenceClass":"C5","impulseClass":"C5","popularityClass":"C5"}},"instances":[{"pids":[{"scheme":"doi","value":"10.12697/acutm.2020.24.03"}],"type":"Article","urls":["https://doi.org/10.12697/acutm.2020.24.03"],"publicationDate":"2020-09-23","refereed":"peerReviewed"},{"pids":[{"scheme":"doi","value":"10.12697/acutm.2020.24.03"}],"type":"Article","urls":["https://ojs.utlib.ee/index.php/ACUTM/article/download/ACUTM.2020.24.03/12212"],"refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.12697/acutm.2020.24.03"}],"type":"Article","urls":["https://doi.org/10.12697/acutm.2020.24.03","https://zbmath.org/7357529"],"publicationDate":"2020-01-01","refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"mag_id","value":"3088539718"},{"scheme":"doi","value":"10.12697/acutm.2020.24.03"}],"type":"Other literature type","urls":["https://dx.doi.org/10.12697/acutm.2020.24.03"],"refereed":"nonPeerReviewed"}],"isGreen":false,"isInDiamondJournal":false}
local.import.sourceOpenAire
local.indexed.atWOS
local.indexed.atScopus

Dosyalar

Koleksiyonlar