Yayın: Some unrestricted Fibonacci and Lucas hyper-complex numbers
| dc.contributor.author | Bilgici, Göksal | |
| dc.contributor.author | Daşdemir, Ahmet | |
| dc.date.accessioned | 2026-01-06T06:07:55Z | |
| dc.date.issued | 2020-09-23 | |
| dc.description.abstract | A number of studies have investigated the Fibonacci quaternions and octonions that include consecutive terms of the Fibonacci sequence. This paper presents a new generalization of Fibonacci quaternions, octonions and sedenions, where non-consecutive Fibonacci numbers are used. We present the Binet formulas, generating functions and some identities for these new types of hyper-complex numbers. | |
| dc.description.uri | https://doi.org/10.12697/acutm.2020.24.03 | |
| dc.description.uri | https://ojs.utlib.ee/index.php/ACUTM/article/download/ACUTM.2020.24.03/12212 | |
| dc.description.uri | https://zbmath.org/7357529 | |
| dc.description.uri | https://dx.doi.org/10.12697/acutm.2020.24.03 | |
| dc.identifier.doi | 10.12697/acutm.2020.24.03 | |
| dc.identifier.eissn | 2228-4699 | |
| dc.identifier.endpage | 48 | |
| dc.identifier.issn | 1406-2283 | |
| dc.identifier.openaire | doi_dedup___::f4d435e04a0d62537ce4969c04bbc7fe | |
| dc.identifier.orcid | 0000-0001-9964-5578 | |
| dc.identifier.orcid | 0000-0001-8352-2020 | |
| dc.identifier.scopus | 2-s2.0-85091383829 | |
| dc.identifier.startpage | 37 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12597/43920 | |
| dc.identifier.volume | 24 | |
| dc.identifier.wos | 000575207200003 | |
| dc.publisher | University of Tartu | |
| dc.relation.ispartof | Acta et Commentationes Universitatis Tartuensis de Mathematica | |
| dc.rights | OPEN | |
| dc.subject | Fibonacci and Lucas numbers and polynomials and generalizations | |
| dc.subject | Fibonacci octonion | |
| dc.subject | Fibonacci sedenion | |
| dc.subject | Fibonacci quaternion | |
| dc.title | Some unrestricted Fibonacci and Lucas hyper-complex numbers | |
| dc.type | Article | |
| dspace.entity.type | Publication | |
| local.api.response | {"authors":[{"fullName":"Göksal Bilgici","name":"Göksal","surname":"Bilgici","rank":1,"pid":{"id":{"scheme":"orcid","value":"0000-0001-9964-5578"},"provenance":null}},{"fullName":"Ahmet Daşdemir","name":"Ahmet","surname":"Daşdemir","rank":2,"pid":{"id":{"scheme":"orcid","value":"0000-0001-8352-2020"},"provenance":null}}],"openAccessColor":"gold","publiclyFunded":false,"type":"publication","language":{"code":"und","label":"Undetermined"},"countries":null,"subjects":[{"subject":{"scheme":"FOS","value":"0103 physical sciences"},"provenance":null},{"subject":{"scheme":"keyword","value":"Fibonacci and Lucas numbers and polynomials and generalizations"},"provenance":null},{"subject":{"scheme":"keyword","value":"Fibonacci octonion"},"provenance":null},{"subject":{"scheme":"FOS","value":"0101 mathematics"},"provenance":null},{"subject":{"scheme":"keyword","value":"Fibonacci sedenion"},"provenance":null},{"subject":{"scheme":"keyword","value":"Fibonacci quaternion"},"provenance":null},{"subject":{"scheme":"FOS","value":"01 natural sciences"},"provenance":null}],"mainTitle":"Some unrestricted Fibonacci and Lucas hyper-complex numbers","subTitle":null,"descriptions":["<jats:p>A number of studies have investigated the Fibonacci quaternions and octonions that include consecutive terms of the Fibonacci sequence. This paper presents a new generalization of Fibonacci quaternions, octonions and sedenions, where non-consecutive Fibonacci numbers are used. We present the Binet formulas, generating functions and some identities for these new types of hyper-complex numbers.</jats:p>"],"publicationDate":"2020-09-23","publisher":"University of Tartu","embargoEndDate":null,"sources":["Crossref"],"formats":["application/xml"],"contributors":null,"coverages":null,"bestAccessRight":{"code":"c_abf2","label":"OPEN","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":{"name":"Acta et Commentationes Universitatis Tartuensis de Mathematica","issnPrinted":"1406-2283","issnOnline":"2228-4699","issnLinking":null,"ep":"48","iss":null,"sp":"37","vol":"24","edition":null,"conferencePlace":null,"conferenceDate":null},"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_dedup___::f4d435e04a0d62537ce4969c04bbc7fe","originalIds":["10.12697/acutm.2020.24.03","50|doiboost____|f4d435e04a0d62537ce4969c04bbc7fe","50|c2b0b933574d::90f2b689c0cd44027037739147ec61fd","oai:zbmath.org:7357529","3088539718"],"pids":[{"scheme":"doi","value":"10.12697/acutm.2020.24.03"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":2,"influence":2.643746e-9,"popularity":2.952375e-9,"impulse":1,"citationClass":"C5","influenceClass":"C5","impulseClass":"C5","popularityClass":"C5"}},"instances":[{"pids":[{"scheme":"doi","value":"10.12697/acutm.2020.24.03"}],"type":"Article","urls":["https://doi.org/10.12697/acutm.2020.24.03"],"publicationDate":"2020-09-23","refereed":"peerReviewed"},{"pids":[{"scheme":"doi","value":"10.12697/acutm.2020.24.03"}],"type":"Article","urls":["https://ojs.utlib.ee/index.php/ACUTM/article/download/ACUTM.2020.24.03/12212"],"refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.12697/acutm.2020.24.03"}],"type":"Article","urls":["https://doi.org/10.12697/acutm.2020.24.03","https://zbmath.org/7357529"],"publicationDate":"2020-01-01","refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"mag_id","value":"3088539718"},{"scheme":"doi","value":"10.12697/acutm.2020.24.03"}],"type":"Other literature type","urls":["https://dx.doi.org/10.12697/acutm.2020.24.03"],"refereed":"nonPeerReviewed"}],"isGreen":false,"isInDiamondJournal":false} | |
| local.import.source | OpenAire | |
| local.indexed.at | WOS | |
| local.indexed.at | Scopus |
