Yayın: Oscillation criteria for higher-order nonlinear delay dynamic equations on time scales
| dc.contributor.author | Akın, Ömer | |
| dc.contributor.author | Bolat, Yaşar | |
| dc.date.accessioned | 2026-01-02T23:40:05Z | |
| dc.date.issued | 2016-06-01 | |
| dc.description.abstract | Abstract In this paper, oscillation criteria are obtained for higher-order half-linear delay difference equations involving generalized difference operator of the form <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:msub> <m:mtext>Δ</m:mtext> <m:mi>b</m:mi> </m:msub> <m:mo>(</m:mo> <m:msub> <m:mi>p</m:mi> <m:mi>n</m:mi> </m:msub> <m:msup> <m:mrow> <m:mo>(</m:mo> <m:msubsup> <m:mtext>Δ</m:mtext> <m:mi>b</m:mi> <m:mrow> <m:mi>m</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> <m:msub> <m:mi>x</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>)</m:mo> </m:mrow> <m:mi>α</m:mi> </m:msup> <m:mo>)</m:mo> <m:mo>+</m:mo> <m:msub> <m:mi>q</m:mi> <m:mi>n</m:mi> </m:msub> <m:msubsup> <m:mi>x</m:mi> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mi>σ</m:mi> </m:mrow> <m:mi>β</m:mi> </m:msubsup> <m:mo>=</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mtext> </m:mtext> <m:mi>n</m:mi> <m:mo>≥</m:mo> <m:msub> <m:mi>n</m:mi> <m:mn>0</m:mn> </m:msub> <m:mo>,</m:mo> </m:mrow> </m:math> $${\Delta _b}({p_n}{(\Delta _b^{m - 1}{x_n})^\alpha }) + {q_n}x_{n - \sigma }^\beta = 0,\qquad n \geq {n_0},$$ where ∆ b is defined by ∆ b yn = y n+1 - by n , b ∈ ℝ - {0}, p: ℕ → ℝ+, α, β are the ratio of odd positive integers with β ≤ α; m, n, n 0, σ are non-negative integers, q: ℕ → ℝ. The cases of b negative and positive and qn ≥ 0, which has important role for oscillation of this equation, are considered. Also we provide some examples to illustrate our main results. | |
| dc.description.uri | https://doi.org/10.1515/ms-2015-0169 | |
| dc.description.uri | https://doi.org/10.1515/ms-2015-0169 10.1515/ms-2015-0169 | |
| dc.description.uri | https://hdl.handle.net/20.500.11851/1726 | |
| dc.description.uri | https://dx.doi.org/10.1515/ms-2015-0169 | |
| dc.identifier.doi | 10.1515/ms-2015-0169 | |
| dc.identifier.eissn | 1337-2211 | |
| dc.identifier.endpage | 686 | |
| dc.identifier.issn | 0139-9918 | |
| dc.identifier.openaire | doi_dedup___::ec59ee42d5bdb4e100c14d5762eac8b4 | |
| dc.identifier.scopus | 2-s2.0-84984986868 | |
| dc.identifier.startpage | 677 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12597/36181 | |
| dc.identifier.volume | 66 | |
| dc.identifier.wos | 000387221500016 | |
| dc.language.iso | eng | |
| dc.publisher | Walter de Gruyter GmbH | |
| dc.relation.ispartof | Mathematica Slovaca | |
| dc.rights | CLOSED | |
| dc.subject | generalized difference | |
| dc.subject | difference equaions | |
| dc.subject | half-linear difference equation | |
| dc.subject | oscillation | |
| dc.title | Oscillation criteria for higher-order nonlinear delay dynamic equations on time scales | |
| dc.type | Article | |
| dspace.entity.type | Publication | |
| local.api.response | {"authors":[{"fullName":"Akın, Ömer","name":"Ömer","surname":"Akın","rank":1,"pid":null},{"fullName":"Bolat, Yaşar","name":"Yaşar","surname":"Bolat","rank":2,"pid":null}],"openAccessColor":null,"publiclyFunded":false,"type":"publication","language":{"code":"eng","label":"English"},"countries":null,"subjects":[{"subject":{"scheme":"keyword","value":"generalized difference"},"provenance":null},{"subject":{"scheme":"keyword","value":"difference equaions"},"provenance":null},{"subject":{"scheme":"keyword","value":"half-linear difference equation"},"provenance":null},{"subject":{"scheme":"keyword","value":"oscillation"},"provenance":null},{"subject":{"scheme":"FOS","value":"0101 mathematics"},"provenance":null},{"subject":{"scheme":"FOS","value":"01 natural sciences"},"provenance":null}],"mainTitle":"Oscillation criteria for higher-order nonlinear delay dynamic equations on time scales","subTitle":null,"descriptions":["<jats:title>Abstract</jats:title> <jats:p>In this paper, oscillation criteria are obtained for higher-order half-linear delay difference equations involving generalized difference operator of the form</jats:p> <jats:p> <jats:disp-formula id=\"j_ms-2015-0169_eq_001_w2aab3b8e2101b1b7b1aab1c15b2aAa\"> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ms-2015-0169_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mtext>Δ</m:mtext> <m:mi>b</m:mi> </m:msub> <m:mo>(</m:mo> <m:msub> <m:mi>p</m:mi> <m:mi>n</m:mi> </m:msub> <m:msup> <m:mrow> <m:mo>(</m:mo> <m:msubsup> <m:mtext>Δ</m:mtext> <m:mi>b</m:mi> <m:mrow> <m:mi>m</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> <m:msub> <m:mi>x</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>)</m:mo> </m:mrow> <m:mi>α</m:mi> </m:msup> <m:mo>)</m:mo> <m:mo>+</m:mo> <m:msub> <m:mi>q</m:mi> <m:mi>n</m:mi> </m:msub> <m:msubsup> <m:mi>x</m:mi> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mi>σ</m:mi> </m:mrow> <m:mi>β</m:mi> </m:msubsup> <m:mo>=</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mtext> </m:mtext> <m:mi>n</m:mi> <m:mo>≥</m:mo> <m:msub> <m:mi>n</m:mi> <m:mn>0</m:mn> </m:msub> <m:mo>,</m:mo> </m:mrow> </m:math> <jats:tex-math>$${\\Delta _b}({p_n}{(\\Delta _b^{m - 1}{x_n})^\\alpha }) + {q_n}x_{n - \\sigma }^\\beta = 0,\\qquad n \\geq {n_0},$$</jats:tex-math> </jats:alternatives> </jats:disp-formula> </jats:p> <jats:p>where ∆<jats:sub> <jats:italic>b</jats:italic> </jats:sub> is defined by ∆<jats:sub> <jats:italic>b</jats:italic> </jats:sub> <jats:italic>y<jats:sub>n</jats:sub> </jats:italic> = <jats:italic>y</jats:italic> <jats:sub> <jats:italic>n</jats:italic>+1</jats:sub> - <jats:italic>by</jats:italic> <jats:sub> <jats:italic>n</jats:italic> </jats:sub>, <jats:italic>b</jats:italic> ∈ ℝ - {0}, <jats:italic>p</jats:italic>: ℕ → ℝ<jats:sup>+</jats:sup>, <jats:italic>α</jats:italic>, <jats:italic>β</jats:italic> are the ratio of odd positive integers with <jats:italic>β</jats:italic> ≤ <jats:italic>α</jats:italic>; <jats:italic>m</jats:italic>, <jats:italic>n</jats:italic>, <jats:italic>n</jats:italic> <jats:sub>0</jats:sub>, <jats:italic>σ</jats:italic> are non-negative integers, <jats:italic>q</jats:italic>: ℕ → ℝ. The cases of <jats:italic>b</jats:italic> negative and positive and <jats:italic>q<jats:sub>n</jats:sub> </jats:italic> ≥ 0, which has important role for oscillation of this equation, are considered. Also we provide some examples to illustrate our main results.</jats:p>"],"publicationDate":"2016-06-01","publisher":"Walter de Gruyter GmbH","embargoEndDate":null,"sources":["Crossref"],"formats":null,"contributors":null,"coverages":null,"bestAccessRight":{"code":"c_14cb","label":"CLOSED","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":{"name":"Mathematica Slovaca","issnPrinted":"0139-9918","issnOnline":"1337-2211","issnLinking":null,"ep":"686","iss":null,"sp":"677","vol":"66","edition":null,"conferencePlace":null,"conferenceDate":null},"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_dedup___::ec59ee42d5bdb4e100c14d5762eac8b4","originalIds":["10.1515/ms-2015-0169","50|doiboost____|ec59ee42d5bdb4e100c14d5762eac8b4","50|dris___02022::b3167c01e1b10da525e6dc6675f4ddca","oai:gcris.etu.edu.tr:Publications/20.500.11851/1726","2509843880","oai:gcris.etu.edu.tr:20.500.11851/1726","50|od______4483::f1cfe5d11f553a11fea4b48678d03039"],"pids":[{"scheme":"doi","value":"10.1515/ms-2015-0169"},{"scheme":"handle","value":"20.500.11851/1726"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":2,"influence":2.7342422e-9,"popularity":2.43328e-9,"impulse":0,"citationClass":"C5","influenceClass":"C5","impulseClass":"C5","popularityClass":"C5"}},"instances":[{"pids":[{"scheme":"doi","value":"10.1515/ms-2015-0169"}],"type":"Article","urls":["https://doi.org/10.1515/ms-2015-0169"],"publicationDate":"2016-06-01","refereed":"peerReviewed"},{"pids":[{"scheme":"handle","value":"20.500.11851/1726"}],"alternateIdentifiers":[{"scheme":"doi","value":"10.1515/ms-2015-016910.1515/ms-2015-0169"}],"type":"Other literature type","urls":["https://doi.org/10.1515/ms-2015-0169 10.1515/ms-2015-0169","https://hdl.handle.net/20.500.11851/1726"],"refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.1515/ms-2015-0169"},{"scheme":"mag_id","value":"2509843880"}],"type":"Article","urls":["https://dx.doi.org/10.1515/ms-2015-0169"],"refereed":"nonPeerReviewed"},{"pids":[{"scheme":"handle","value":"20.500.11851/1726"}],"alternateIdentifiers":[{"scheme":"doi","value":"10.1515/ms-2015-0169"}],"type":"Article","urls":["https://doi.org/10.1515/ms-2015-0169","https://hdl.handle.net/20.500.11851/1726"],"publicationDate":"2019-07-04","refereed":"nonPeerReviewed"}],"isGreen":false,"isInDiamondJournal":false} | |
| local.import.source | OpenAire | |
| local.indexed.at | WOS | |
| local.indexed.at | Scopus |
