Yayın:
On Stakhov Functions and New Hyperboloid Surfaces

dc.contributor.authorDaşdemir, Ahmet
dc.date.accessioned2026-01-04T22:11:38Z
dc.date.issued2025-06-30
dc.description.abstractThis paper presents an investigation into the generalization of hyperbolic Fibonacci sine and cosine functions, as well as Fibonacci spirals. Initially, we establish the main definitions and theoretically model them, listing several special cases. We then uncover fundamental results, including the De Moivre and Pythagorean formulas. Based on these new definitions, we introduce new classes of three-dimensional hyperboloid surfaces and compute their Gauss and mean curvatures. Notably, we demonstrate that these surfaces are geodesic.
dc.description.urihttps://doi.org/10.47086/pims.1653932
dc.identifier.doi10.47086/pims.1653932
dc.identifier.endpage27
dc.identifier.issn2717-6355
dc.identifier.openairedoi_________::19c2cef1650716abefd270ed34c929aa
dc.identifier.orcid0000-0001-8352-2020
dc.identifier.startpage16
dc.identifier.urihttps://hdl.handle.net/20.500.12597/42807
dc.identifier.volume7
dc.publisherProceedings of International Mathematical Sciences
dc.relation.ispartofProceedings of International Mathematical Sciences
dc.rightsOPEN
dc.titleOn Stakhov Functions and New Hyperboloid Surfaces
dc.typeArticle
dspace.entity.typePublication
local.api.response{"authors":[{"fullName":"Ahmet Daşdemir","name":"Ahmet","surname":"Daşdemir","rank":1,"pid":{"id":{"scheme":"orcid","value":"0000-0001-8352-2020"},"provenance":null}}],"openAccessColor":"gold","publiclyFunded":false,"type":"publication","language":{"code":"und","label":"Undetermined"},"countries":null,"subjects":null,"mainTitle":"On Stakhov Functions and New Hyperboloid Surfaces","subTitle":null,"descriptions":["<jats:p xml:lang=\"en\">This paper presents an investigation into the generalization of hyperbolic Fibonacci sine and cosine functions, as well as Fibonacci spirals. Initially, we establish the main definitions and theoretically model them, listing several special cases. We then uncover fundamental results, including the De Moivre and Pythagorean formulas. Based on these new definitions, we introduce new classes of three-dimensional hyperboloid surfaces and compute their Gauss and mean curvatures. Notably, we demonstrate that these surfaces are geodesic.</jats:p>"],"publicationDate":"2025-06-30","publisher":"Proceedings of International Mathematical Sciences","embargoEndDate":null,"sources":["Crossref"],"formats":null,"contributors":null,"coverages":null,"bestAccessRight":{"code":"c_abf2","label":"OPEN","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":{"name":"Proceedings of International Mathematical Sciences","issnPrinted":"2717-6355","issnOnline":null,"issnLinking":null,"ep":"27","iss":null,"sp":"16","vol":"7","edition":null,"conferencePlace":null,"conferenceDate":null},"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_________::19c2cef1650716abefd270ed34c929aa","originalIds":["10.47086/pims.1653932","50|doiboost____|19c2cef1650716abefd270ed34c929aa"],"pids":[{"scheme":"doi","value":"10.47086/pims.1653932"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":0,"influence":2.5349236e-9,"popularity":2.8669784e-9,"impulse":0,"citationClass":"C5","influenceClass":"C5","impulseClass":"C5","popularityClass":"C5"}},"instances":[{"pids":[{"scheme":"doi","value":"10.47086/pims.1653932"}],"type":"Article","urls":["https://doi.org/10.47086/pims.1653932"],"publicationDate":"2025-06-30","refereed":"peerReviewed"}],"isGreen":false,"isInDiamondJournal":false}
local.import.sourceOpenAire

Dosyalar

Koleksiyonlar