Yayın:
Some properties and Vajda theorems of split dual Fibonacci and split dual Lucas octonions

dc.contributor.authorTokeşer, Ümit
dc.contributor.authorMert, Tuğba
dc.contributor.authorDündar, Yakup
dc.date.accessioned2026-01-04T16:18:02Z
dc.date.issued2022-01-01
dc.description.abstract<abstract><p>In this paper, we introduce split dual Fibonacci and split dual Lucas octonions over the algebra $ \widetilde{\widetilde{O}}\left(a, b, c\right) $, where $ a, b $ and $ c $ are real numbers. We obtain Binet formulas for these octonions. Also, we give many identities and Vajda theorems for split dual Fibonacci and split dual Lucas octonions including Catalan's identity, Cassini's identity and d'Ocagne's identity.</p></abstract>
dc.description.urihttps://doi.org/10.3934/math.2022483
dc.description.urihttps://doaj.org/article/2f31441f453c48e8ad429eca34a5a0b5
dc.description.urihttps://hdl.handle.net/20.500.12418/13437
dc.description.urihttps://doi.org/https://doi.org/20.500.12418/13437
dc.identifier.doi10.3934/math.2022483
dc.identifier.endpage8653
dc.identifier.issn2473-6988
dc.identifier.openairedoi_dedup___::c97b272971aa91a78101f6de56b0812f
dc.identifier.orcid0000-0003-4773-8291
dc.identifier.scopus2-s2.0-85190254980
dc.identifier.startpage8645
dc.identifier.urihttps://hdl.handle.net/20.500.12597/39413
dc.identifier.volume7
dc.identifier.wos000765050600009
dc.publisherAmerican Institute of Mathematical Sciences (AIMS)
dc.relation.ispartofAIMS Mathematics
dc.rightsOPEN
dc.subjectoctonions
dc.subjectsplit dual fibonacci and split dual lucas octonions
dc.subjectQA1-939
dc.subjectdual fibonacci and dual lucas numbers
dc.subjectMathematics
dc.titleSome properties and Vajda theorems of split dual Fibonacci and split dual Lucas octonions
dc.typeArticle
dspace.entity.typePublication
local.api.response{"authors":[{"fullName":"Tokeşer, Ümit","name":"Ümit","surname":"Tokeşer","rank":1,"pid":{"id":{"scheme":"orcid","value":"0000-0003-4773-8291"},"provenance":null}},{"fullName":"Mert, Tuğba","name":"Tuğba","surname":"Mert","rank":2,"pid":null},{"fullName":"Dündar, Yakup","name":"Yakup","surname":"Dündar","rank":3,"pid":null}],"openAccessColor":"gold","publiclyFunded":false,"type":"publication","language":{"code":"und","label":"Undetermined"},"countries":null,"subjects":[{"subject":{"scheme":"keyword","value":"octonions"},"provenance":null},{"subject":{"scheme":"keyword","value":"split dual fibonacci and split dual lucas octonions"},"provenance":null},{"subject":{"scheme":"keyword","value":"QA1-939"},"provenance":null},{"subject":{"scheme":"keyword","value":"dual fibonacci and dual lucas numbers"},"provenance":null},{"subject":{"scheme":"keyword","value":"Mathematics"},"provenance":null}],"mainTitle":"Some properties and Vajda theorems of split dual Fibonacci and split dual Lucas octonions","subTitle":null,"descriptions":["<jats:p xml:lang=\"fr\">&lt;abstract&gt;&lt;p&gt;In this paper, we introduce split dual Fibonacci and split dual Lucas octonions over the algebra $ \\widetilde{\\widetilde{O}}\\left(a, b, c\\right) $, where $ a, b $ and $ c $ are real numbers. We obtain Binet formulas for these octonions. Also, we give many identities and Vajda theorems for split dual Fibonacci and split dual Lucas octonions including Catalan's identity, Cassini's identity and d'Ocagne's identity.&lt;/p&gt;&lt;/abstract&gt;</jats:p>"],"publicationDate":"2022-01-01","publisher":"American Institute of Mathematical Sciences (AIMS)","embargoEndDate":null,"sources":["Crossref","AIMS Mathematics, Vol 7, Iss 5, Pp 8645-8653 (2022)"],"formats":["application/pdf"],"contributors":["Fen Fakültesi","https://orcid.org/0000-0001-8258-8298","orcid:0000-0001-8258-8298"],"coverages":null,"bestAccessRight":{"code":"c_abf2","label":"OPEN","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":{"name":"AIMS Mathematics","issnPrinted":"2473-6988","issnOnline":null,"issnLinking":null,"ep":"8653","iss":null,"sp":"8645","vol":"7","edition":null,"conferencePlace":null,"conferenceDate":null},"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_dedup___::c97b272971aa91a78101f6de56b0812f","originalIds":["10.3934/math.2022483","50|doiboost____|c97b272971aa91a78101f6de56b0812f","oai:doaj.org/article:2f31441f453c48e8ad429eca34a5a0b5","50|doajarticles::5d293a7bd3cf775c3c3e230ce737d2bb","oai:acikerisim.cumhuriyet.edu.tr:20.500.12418/13437","50|od______3104::8445f89f7768575962dfd2b6953e0f2c","50|base_oa_____::cabc26c28ce880b47022a4fec4ce5120","ftcumhuriyetuniv:oai:acikerisim.cumhuriyet.edu.tr:20.500.12418/13437"],"pids":[{"scheme":"doi","value":"10.3934/math.2022483"},{"scheme":"handle","value":"20.500.12418/13437"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":1,"influence":2.6501474e-9,"popularity":2.648848e-9,"impulse":1,"citationClass":"C5","influenceClass":"C5","impulseClass":"C5","popularityClass":"C5"}},"instances":[{"pids":[{"scheme":"doi","value":"10.3934/math.2022483"}],"type":"Article","urls":["https://doi.org/10.3934/math.2022483"],"publicationDate":"2022-01-01","refereed":"peerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.3934/math.2022483"}],"type":"Article","urls":["https://doaj.org/article/2f31441f453c48e8ad429eca34a5a0b5"],"publicationDate":"2022-03-01","refereed":"nonPeerReviewed"},{"type":"Article","urls":["https://hdl.handle.net/20.500.12418/13437"],"publicationDate":"2023-04-10","refereed":"nonPeerReviewed"},{"pids":[{"scheme":"handle","value":"20.500.12418/13437"}],"type":"Article","urls":["https://doi.org/https://doi.org/20.500.12418/13437"],"publicationDate":"2022-03-02","refereed":"nonPeerReviewed"}],"isGreen":true,"isInDiamondJournal":false}
local.import.sourceOpenAire
local.indexed.atWOS
local.indexed.atScopus

Dosyalar

Koleksiyonlar