Yayın:
Construction of complexiton-type solutions using bilinear form of Hirota-type

dc.contributor.authorKaplan, Melike
dc.contributor.authorRaza, Nauman
dc.date.accessioned2026-01-04T17:20:11Z
dc.date.issued2022-10-06
dc.description.abstractAbstract In this paper, based on the Hirota bilinear form and the extended transformed rational function method, complexiton solutions have been found of the Hirota–Satsuma–Ito (HSI) equation and generalized Calogero–Bogoyavlenskii–Schiff equation through a direct symbolic computation with Maple. This method is the improved form of the transformed rational function method. The obtained complexiton solutions, includes trigonometric and hyperbolic trigonometric solutions, have verified utilizing Hirota bilinear forms. Also, a graphical representation of the obtained solutions is given.
dc.description.urihttps://doi.org/10.1515/ijnsns-2020-0172
dc.description.urihttps://zbmath.org/7677987
dc.identifier.doi10.1515/ijnsns-2020-0172
dc.identifier.eissn2191-0294
dc.identifier.endpage357
dc.identifier.issn1565-1339
dc.identifier.openairedoi_dedup___::59c18dc1c41eb5f65a091b574955e406
dc.identifier.orcid0000-0001-5700-9127
dc.identifier.scopus2-s2.0-85140095675
dc.identifier.startpage349
dc.identifier.urihttps://hdl.handle.net/20.500.12597/40054
dc.identifier.volume24
dc.identifier.wos000864368200001
dc.language.isoeng
dc.publisherWalter de Gruyter GmbH
dc.relation.ispartofInternational Journal of Nonlinear Sciences and Numerical Simulation
dc.rightsCLOSED
dc.subjectKdV equations (Korteweg-de Vries equations)
dc.subjectTransform methods (e.g., integral transforms) applied to PDEs
dc.subjectcomplexiton solutions
dc.subjectextended transformed rational function method
dc.subjectsymbolic computation
dc.titleConstruction of complexiton-type solutions using bilinear form of Hirota-type
dc.typeArticle
dspace.entity.typePublication
local.api.response{"authors":[{"fullName":"Melike Kaplan","name":"Melike","surname":"Kaplan","rank":1,"pid":{"id":{"scheme":"orcid","value":"0000-0001-5700-9127"},"provenance":null}},{"fullName":"Nauman Raza","name":"Nauman","surname":"Raza","rank":2,"pid":null}],"openAccessColor":null,"publiclyFunded":null,"type":"publication","language":{"code":"eng","label":"English"},"countries":null,"subjects":[{"subject":{"scheme":"keyword","value":"KdV equations (Korteweg-de Vries equations)"},"provenance":null},{"subject":{"scheme":"keyword","value":"Transform methods (e.g., integral transforms) applied to PDEs"},"provenance":null},{"subject":{"scheme":"FOS","value":"0103 physical sciences"},"provenance":null},{"subject":{"scheme":"keyword","value":"complexiton solutions"},"provenance":null},{"subject":{"scheme":"FOS","value":"02 engineering and technology"},"provenance":null},{"subject":{"scheme":"keyword","value":"extended transformed rational function method"},"provenance":null},{"subject":{"scheme":"FOS","value":"0210 nano-technology"},"provenance":null},{"subject":{"scheme":"FOS","value":"01 natural sciences"},"provenance":null},{"subject":{"scheme":"keyword","value":"symbolic computation"},"provenance":null}],"mainTitle":"Construction of complexiton-type solutions using bilinear form of Hirota-type","subTitle":null,"descriptions":["<jats:title>Abstract</jats:title> <jats:p>In this paper, based on the Hirota bilinear form and the extended transformed rational function method, complexiton solutions have been found of the Hirota–Satsuma–Ito (HSI) equation and generalized Calogero–Bogoyavlenskii–Schiff equation through a direct symbolic computation with Maple. This method is the improved form of the transformed rational function method. The obtained complexiton solutions, includes trigonometric and hyperbolic trigonometric solutions, have verified utilizing Hirota bilinear forms. Also, a graphical representation of the obtained solutions is given.</jats:p>"],"publicationDate":"2022-10-06","publisher":"Walter de Gruyter GmbH","embargoEndDate":null,"sources":["Crossref"],"formats":["application/xml"],"contributors":null,"coverages":null,"bestAccessRight":{"code":"c_14cb","label":"CLOSED","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":{"name":"International Journal of Nonlinear Sciences and Numerical Simulation","issnPrinted":"1565-1339","issnOnline":"2191-0294","issnLinking":null,"ep":"357","iss":null,"sp":"349","vol":"24","edition":null,"conferencePlace":null,"conferenceDate":null},"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_dedup___::59c18dc1c41eb5f65a091b574955e406","originalIds":["10.1515/ijnsns-2020-0172","50|doiboost____|59c18dc1c41eb5f65a091b574955e406","50|c2b0b933574d::51380803f6fa663f725ead8c0410346d","oai:zbmath.org:7677987"],"pids":[{"scheme":"doi","value":"10.1515/ijnsns-2020-0172"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":5,"influence":2.7782863e-9,"popularity":6.0114154e-9,"impulse":5,"citationClass":"C5","influenceClass":"C5","impulseClass":"C4","popularityClass":"C4"}},"instances":[{"pids":[{"scheme":"doi","value":"10.1515/ijnsns-2020-0172"}],"type":"Article","urls":["https://doi.org/10.1515/ijnsns-2020-0172"],"publicationDate":"2022-10-06","refereed":"peerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.1515/ijnsns-2020-0172"}],"type":"Article","urls":["https://doi.org/10.1515/ijnsns-2020-0172","https://zbmath.org/7677987"],"publicationDate":"2023-01-01","refereed":"nonPeerReviewed"}],"isGreen":null,"isInDiamondJournal":null}
local.import.sourceOpenAire
local.indexed.atWOS
local.indexed.atScopus

Dosyalar

Koleksiyonlar