Yayın:
New Exact Soliton Solutions of the ( 3 + 1 )-Dimensional Conformable Wazwaz–Benjamin–Bona–Mahony Equation via Two Novel Techniques

dc.contributor.authorKaabar, Mohammed K. A.
dc.contributor.authorKaplan, Melike
dc.contributor.authorSiri, Zailan
dc.date.accessioned2026-01-04T15:35:23Z
dc.date.issued2021-07-21
dc.description.abstractIn this work, the ( <a:math xmlns:a="http://www.w3.org/1998/Math/MathML" id="M2"> <a:mn>3</a:mn> <a:mo>+</a:mo> <a:mn>1</a:mn> </a:math> )-dimensional Wazwaz–Benjamin–Bona–Mahony equation is formulated in the sense of conformable derivative. Two novel methods of generalized Kudryashov and exp <c:math xmlns:c="http://www.w3.org/1998/Math/MathML" id="M3"> <c:mfenced open="(" close=")"> <c:mrow> <c:mo>−</c:mo> <c:mi>φ</c:mi> <c:mfenced open="(" close=")"> <c:mrow> <c:mi>ℵ</c:mi> </c:mrow> </c:mfenced> </c:mrow> </c:mfenced> </c:math> are investigated to obtain various exact soliton solutions. All algebraic computations are done with the help of the Maple software. Graphical representations are provided in 3D and 2D profiles to show the behavior and dynamics of all obtained solutions at various parameters’ values and conformable orders using Wolfram Mathematica.
dc.description.urihttps://doi.org/10.1155/2021/4659905
dc.description.urihttps://downloads.hindawi.com/journals/jfs/2021/4659905.pdf
dc.identifier.doi10.1155/2021/4659905
dc.identifier.eissn2314-8888
dc.identifier.endpage13
dc.identifier.issn2314-8896
dc.identifier.openairedoi_dedup___::309df8194cbe150cbe0ec1e47287a0cb
dc.identifier.orcid0000-0003-2260-0341
dc.identifier.orcid0000-0001-5700-9127
dc.identifier.orcid0000-0001-7737-1297
dc.identifier.scopus2-s2.0-85112065837
dc.identifier.startpage1
dc.identifier.urihttps://hdl.handle.net/20.500.12597/38928
dc.identifier.volume2021
dc.identifier.wos000680201600001
dc.language.isoeng
dc.publisherWiley
dc.relation.ispartofJournal of Function Spaces
dc.rightsOPEN
dc.subject.sdg4. Education
dc.titleNew Exact Soliton Solutions of the ( 3 + 1 )-Dimensional Conformable Wazwaz–Benjamin–Bona–Mahony Equation via Two Novel Techniques
dc.typeArticle
dspace.entity.typePublication
local.api.response{"authors":[{"fullName":"Mohammed K. A. Kaabar","name":"Mohammed K. A.","surname":"Kaabar","rank":1,"pid":{"id":{"scheme":"orcid_pending","value":"0000-0003-2260-0341"},"provenance":null}},{"fullName":"Melike Kaplan","name":"Melike","surname":"Kaplan","rank":2,"pid":{"id":{"scheme":"orcid","value":"0000-0001-5700-9127"},"provenance":null}},{"fullName":"Zailan Siri","name":"Zailan","surname":"Siri","rank":3,"pid":{"id":{"scheme":"orcid","value":"0000-0001-7737-1297"},"provenance":null}}],"openAccessColor":"gold","publiclyFunded":false,"type":"publication","language":{"code":"eng","label":"English"},"countries":null,"subjects":[{"subject":{"scheme":"SDG","value":"4. Education"},"provenance":null},{"subject":{"scheme":"FOS","value":"0103 physical sciences"},"provenance":null},{"subject":{"scheme":"FOS","value":"01 natural sciences"},"provenance":null}],"mainTitle":"New Exact Soliton Solutions of the (<a:math xmlns:a=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\"> <a:mn>3</a:mn> <a:mo>+</a:mo> <a:mn>1</a:mn> </a:math>)-Dimensional Conformable Wazwaz–Benjamin–Bona–Mahony Equation via Two Novel Techniques","subTitle":null,"descriptions":["<jats:p>In this work, the (<jats:inline-formula> <a:math xmlns:a=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\"> <a:mn>3</a:mn> <a:mo>+</a:mo> <a:mn>1</a:mn> </a:math> </jats:inline-formula>)-dimensional Wazwaz–Benjamin–Bona–Mahony equation is formulated in the sense of conformable derivative. Two novel methods of generalized Kudryashov and exp<jats:inline-formula> <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\"> <c:mfenced open=\"(\" close=\")\"> <c:mrow> <c:mo>−</c:mo> <c:mi>φ</c:mi> <c:mfenced open=\"(\" close=\")\"> <c:mrow> <c:mi>ℵ</c:mi> </c:mrow> </c:mfenced> </c:mrow> </c:mfenced> </c:math> </jats:inline-formula> are investigated to obtain various exact soliton solutions. All algebraic computations are done with the help of the Maple software. Graphical representations are provided in 3D and 2D profiles to show the behavior and dynamics of all obtained solutions at various parameters’ values and conformable orders using Wolfram Mathematica.</jats:p>"],"publicationDate":"2021-07-21","publisher":"Wiley","embargoEndDate":null,"sources":["Crossref"],"formats":null,"contributors":null,"coverages":null,"bestAccessRight":{"code":"c_abf2","label":"OPEN","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":{"name":"Journal of Function Spaces","issnPrinted":"2314-8896","issnOnline":"2314-8888","issnLinking":null,"ep":"13","iss":null,"sp":"1","vol":"2021","edition":null,"conferencePlace":null,"conferenceDate":null},"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_dedup___::309df8194cbe150cbe0ec1e47287a0cb","originalIds":["4659905","10.1155/2021/4659905","50|doiboost____|309df8194cbe150cbe0ec1e47287a0cb"],"pids":[{"scheme":"doi","value":"10.1155/2021/4659905"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":15,"influence":3.2335523e-9,"popularity":1.3957539e-8,"impulse":14,"citationClass":"C4","influenceClass":"C5","impulseClass":"C4","popularityClass":"C4"}},"instances":[{"pids":[{"scheme":"doi","value":"10.1155/2021/4659905"}],"license":"CC BY","type":"Article","urls":["https://doi.org/10.1155/2021/4659905"],"publicationDate":"2021-07-21","refereed":"peerReviewed"},{"pids":[{"scheme":"doi","value":"10.1155/2021/4659905"}],"license":"CC BY","type":"Article","urls":["https://downloads.hindawi.com/journals/jfs/2021/4659905.pdf"],"refereed":"nonPeerReviewed"}],"isGreen":false,"isInDiamondJournal":false}
local.import.sourceOpenAire
local.indexed.atWOS
local.indexed.atScopus

Dosyalar

Koleksiyonlar