Yayın:
Graphene-based resistant sensor decorated with Mn, Co, Cu for nitric oxide detection: Langmuir adsorption & DFT method

dc.contributor.authorMollaamin, Fatemeh
dc.contributor.authorMonajjemi, Majid
dc.date.accessioned2026-01-04T18:49:37Z
dc.date.issued2023-06-13
dc.description.abstractPurpose The purpose of this paper is to investigate the ability of transition metals (TMs) of iron-, nickel- and zinc-doped graphene nanosheet for adsorption of toxic gas of nitric oxide (NO). The results of this paper have provided a favorable understanding of the interaction between TM-doped graphene nanosheet and NO molecule. Design/methodology/approach A high performance of TM-doped graphene nanosheet as a gas sensor is demonstrated by modeling the material’s transport characteristics by means of the Langmuir adsorption and three-layered ONIOM/ density functional theory method. The Langmuir adsorption model has been done with a three-layered ONIOM using CAM-B3LYP functional and LANL2DZ and 6–311G (d, p) basis sets by Gaussian 16 revision C.01 program towards the formation of of NO→TM(Mn, Co, Cu)-doped on the Gr nanosheet. Findings The changes of charge density for Langmuir adsorption of NO on Mn-, Co- and Cu-doped graphene nanosheet orderly have been achieved as: ΔQCo-doped = +0.309 &gt;&gt; ΔQMn-doped = −0.074 &gt; ΔQCu-doped = −0.051. Therefore, the number of changes of charge density have concluded a more remarkable charge transfer for Mn-doped graphene nanosheet. However, based on nuclear magnetic resonance spectroscopy, the sharp peaks around Cu doped on the surface of graphene nanosheet and C19 close to junction of N2 and Co17 have been observed. In addition, Cu-doped graphene sheet has a large effect on bond orbitals of C8–Cu 17, C15–Cu 17 and C16–Cu17 in the adsorption of NO on the Cu-doped/Gr which has shown the maximum occupancy. The amounts of <m:math xmlns:m="http://www.w3.org/1998/Math/MathML" display="inline"><m:mrow><m:mi>Δ</m:mi><m:msubsup><m:mtext>G</m:mtext><m:mrow><m:mtext>ads</m:mtext><m:mo>,</m:mo><m:mtext>NO</m:mtext><m:mo>→</m:mo><m:mtext>Mn</m:mtext><m:mo>−</m:mo><m:mtext>C</m:mtext></m:mrow><m:mtext>o</m:mtext></m:msubsup></m:mrow></m:math> through IR computations based on polarizability have exhibited that <m:math xmlns:m="http://www.w3.org/1998/Math/MathML" display="inline"><m:mrow><m:mi>Δ</m:mi><m:msubsup><m:mtext>G</m:mtext><m:mrow><m:mtext>ads</m:mtext><m:mo>,</m:mo><m:mtext>NO</m:mtext><m:mo>→</m:mo><m:mtext>Mn</m:mtext><m:mo>−</m:mo><m:mtext>C</m:mtext></m:mrow><m:mtext>o</m:mtext></m:msubsup></m:mrow></m:math> has indicated the most energy gap because of charge density transfer from the nitrogen atom in NO to Mn-doped graphene nanosheet, though <m:math xmlns:m="http://www.w3.org/1998/Math/MathML" display="inline"><m:mrow><m:mi>Δ</m:mi><m:msubsup><m:mi>G</m:mi><m:mrow><m:mo stretchy="true">(</m:mo><m:mi>N</m:mi><m:mi>O</m:mi><m:mo>→</m:mo><m:mi>C</m:mi><m:mi>u</m:mi><m:mo>−</m:mo><m:mi>C</m:mi><m:mo stretchy="true">)</m:mo></m:mrow><m:mn>0</m:mn></m:msubsup><m:mo>&gt;</m:mo></m:mrow></m:math> <m:math xmlns:m="http://www.w3.org/1998/Math/MathML" display="inline"><m:mrow><m:mi>Δ</m:mi><m:msubsup><m:mi>G</m:mi><m:mrow><m:mo stretchy="true">(</m:mo><m:mi>N</m:mi><m:mi>O</m:mi><m:mo>→</m:mo><m:mi>C</m:mi><m:mi>o</m:mi><m:mo>−</m:mo><m:mi>C</m:mi><m:mo stretchy="true">)</m:mo></m:mrow><m:mn>0</m:mn></m:msubsup><m:mo>&gt;</m:mo><m:mi>Δ</m:mi><m:msubsup><m:mi>G</m:mi><m:mrow><m:mo stretchy="true">(</m:mo><m:mi>N</m:mi><m:mi>O</m:mi><m:mo>→</m:mo><m:mi>M</m:mi><m:mi>n</m:mi><m:mo>−</m:mo><m:mi>C</m:mi><m:mo stretchy="true">)</m:mo></m:mrow><m:mn>0</m:mn></m:msubsup><m:mo>.</m:mo></m:mrow></m:math> Originality/value This research aims to explore the adsorption of hazardous pollutant gas of “NO” by using carbon nanostructure doped by “TM” of iron, nickel and zinc to evaluate the effectiveness of adsorption parameters of various TM-doped graphene nanosheets.
dc.description.urihttps://doi.org/10.1108/sr-03-2023-0040
dc.identifier.doi10.1108/sr-03-2023-0040
dc.identifier.eissn0260-2288
dc.identifier.endpage279
dc.identifier.issn0260-2288
dc.identifier.openairedoi_________::dff79ddd6f34b80ac26db7a71810b777
dc.identifier.scopus2-s2.0-85161374972
dc.identifier.startpage266
dc.identifier.urihttps://hdl.handle.net/20.500.12597/40787
dc.identifier.volume43
dc.identifier.wos001005836600001
dc.language.isoeng
dc.publisherEmerald
dc.relation.ispartofSensor Review
dc.rightsCLOSED
dc.titleGraphene-based resistant sensor decorated with Mn, Co, Cu for nitric oxide detection: Langmuir adsorption &amp; DFT method
dc.typeArticle
dspace.entity.typePublication
local.api.response{"authors":[{"fullName":"Fatemeh Mollaamin","name":"Fatemeh","surname":"Mollaamin","rank":1,"pid":null},{"fullName":"Majid Monajjemi","name":"Majid","surname":"Monajjemi","rank":2,"pid":null}],"openAccessColor":null,"publiclyFunded":false,"type":"publication","language":{"code":"eng","label":"English"},"countries":null,"subjects":[{"subject":{"scheme":"FOS","value":"02 engineering and technology"},"provenance":null},{"subject":{"scheme":"FOS","value":"0210 nano-technology"},"provenance":null},{"subject":{"scheme":"FOS","value":"01 natural sciences"},"provenance":null},{"subject":{"scheme":"FOS","value":"0104 chemical sciences"},"provenance":null}],"mainTitle":"Graphene-based resistant sensor decorated with Mn, Co, Cu for nitric oxide detection: Langmuir adsorption &amp; DFT method","subTitle":null,"descriptions":["<jats:sec> <jats:title content-type=\"abstract-subheading\">Purpose</jats:title> <jats:p>The purpose of this paper is to investigate the ability of transition metals (TMs) of iron-, nickel- and zinc-doped graphene nanosheet for adsorption of toxic gas of nitric oxide (NO). The results of this paper have provided a favorable understanding of the interaction between TM-doped graphene nanosheet and NO molecule.</jats:p> </jats:sec> <jats:sec> <jats:title content-type=\"abstract-subheading\">Design/methodology/approach</jats:title> <jats:p>A high performance of TM-doped graphene nanosheet as a gas sensor is demonstrated by modeling the material’s transport characteristics by means of the Langmuir adsorption and three-layered ONIOM/ density functional theory method. The Langmuir adsorption model has been done with a three-layered ONIOM using CAM-B3LYP functional and LANL2DZ and 6–311G (d, p) basis sets by Gaussian 16 revision C.01 program towards the formation of of NO→TM(Mn, Co, Cu)-doped on the Gr nanosheet.</jats:p> </jats:sec> <jats:sec> <jats:title content-type=\"abstract-subheading\">Findings</jats:title> <jats:p>The changes of charge density for Langmuir adsorption of NO on Mn-, Co- and Cu-doped graphene nanosheet orderly have been achieved as: ΔQ<jats:sub>Co-doped</jats:sub> = +0.309 &gt;&gt; ΔQ<jats:sub>Mn-doped</jats:sub> = −0.074 &gt; ΔQ<jats:sub>Cu-doped</jats:sub> = −0.051. Therefore, the number of changes of charge density have concluded a more remarkable charge transfer for Mn-doped graphene nanosheet. However, based on nuclear magnetic resonance spectroscopy, the sharp peaks around Cu doped on the surface of graphene nanosheet and C19 close to junction of N2 and Co17 have been observed. In addition, Cu-doped graphene sheet has a large effect on bond orbitals of C8–Cu 17, C15–Cu 17 and C16–Cu17 in the adsorption of NO on the Cu-doped/Gr which has shown the maximum occupancy. The amounts of <jats:inline-formula id=\"ieq1\"> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"SR-03-2023-004001.tif\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mrow><m:mi>Δ</m:mi><m:msubsup><m:mtext>G</m:mtext><m:mrow><m:mtext>ads</m:mtext><m:mo>,</m:mo><m:mtext>NO</m:mtext><m:mo>→</m:mo><m:mtext>Mn</m:mtext><m:mo>−</m:mo><m:mtext>C</m:mtext></m:mrow><m:mtext>o</m:mtext></m:msubsup></m:mrow></m:math></jats:inline-formula> through IR computations based on polarizability have exhibited that <jats:inline-formula id=\"ieq2\"> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"SR-03-2023-004002.tif\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mrow><m:mi>Δ</m:mi><m:msubsup><m:mtext>G</m:mtext><m:mrow><m:mtext>ads</m:mtext><m:mo>,</m:mo><m:mtext>NO</m:mtext><m:mo>→</m:mo><m:mtext>Mn</m:mtext><m:mo>−</m:mo><m:mtext>C</m:mtext></m:mrow><m:mtext>o</m:mtext></m:msubsup></m:mrow></m:math></jats:inline-formula> has indicated the most energy gap because of charge density transfer from the nitrogen atom in NO to Mn-doped graphene nanosheet, though <jats:inline-formula id=\"ieq3\"> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"SR-03-2023-004003.tif\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mrow><m:mi>Δ</m:mi><m:msubsup><m:mi>G</m:mi><m:mrow><m:mo stretchy=\"true\">(</m:mo><m:mi>N</m:mi><m:mi>O</m:mi><m:mo>→</m:mo><m:mi>C</m:mi><m:mi>u</m:mi><m:mo>−</m:mo><m:mi>C</m:mi><m:mo stretchy=\"true\">)</m:mo></m:mrow><m:mn>0</m:mn></m:msubsup><m:mo>&gt;</m:mo></m:mrow></m:math></jats:inline-formula> <jats:inline-formula id=\"ieq4\"> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"SR-03-2023-004004.tif\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mrow><m:mi>Δ</m:mi><m:msubsup><m:mi>G</m:mi><m:mrow><m:mo stretchy=\"true\">(</m:mo><m:mi>N</m:mi><m:mi>O</m:mi><m:mo>→</m:mo><m:mi>C</m:mi><m:mi>o</m:mi><m:mo>−</m:mo><m:mi>C</m:mi><m:mo stretchy=\"true\">)</m:mo></m:mrow><m:mn>0</m:mn></m:msubsup><m:mo>&gt;</m:mo><m:mi>Δ</m:mi><m:msubsup><m:mi>G</m:mi><m:mrow><m:mo stretchy=\"true\">(</m:mo><m:mi>N</m:mi><m:mi>O</m:mi><m:mo>→</m:mo><m:mi>M</m:mi><m:mi>n</m:mi><m:mo>−</m:mo><m:mi>C</m:mi><m:mo stretchy=\"true\">)</m:mo></m:mrow><m:mn>0</m:mn></m:msubsup><m:mo>.</m:mo></m:mrow></m:math></jats:inline-formula></jats:p> </jats:sec> <jats:sec> <jats:title content-type=\"abstract-subheading\">Originality/value</jats:title> <jats:p>This research aims to explore the adsorption of hazardous pollutant gas of “NO” by using carbon nanostructure doped by “TM” of iron, nickel and zinc to evaluate the effectiveness of adsorption parameters of various TM-doped graphene nanosheets.</jats:p> </jats:sec>"],"publicationDate":"2023-06-13","publisher":"Emerald","embargoEndDate":null,"sources":["Crossref"],"formats":null,"contributors":null,"coverages":null,"bestAccessRight":{"code":"c_14cb","label":"CLOSED","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":{"name":"Sensor Review","issnPrinted":"0260-2288","issnOnline":"0260-2288","issnLinking":null,"ep":"279","iss":null,"sp":"266","vol":"43","edition":null,"conferencePlace":null,"conferenceDate":null},"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_________::dff79ddd6f34b80ac26db7a71810b777","originalIds":["10.1108/SR-03-2023-0040","10.1108/sr-03-2023-0040","50|doiboost____|dff79ddd6f34b80ac26db7a71810b777"],"pids":[{"scheme":"doi","value":"10.1108/sr-03-2023-0040"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":17,"influence":2.8990705e-9,"popularity":1.5340351e-8,"impulse":17,"citationClass":"C4","influenceClass":"C5","impulseClass":"C4","popularityClass":"C4"}},"instances":[{"pids":[{"scheme":"doi","value":"10.1108/sr-03-2023-0040"}],"license":"Emerald Insight Site Policies","type":"Article","urls":["https://doi.org/10.1108/sr-03-2023-0040"],"publicationDate":"2023-06-13","refereed":"peerReviewed"}],"isGreen":false,"isInDiamondJournal":false}
local.import.sourceOpenAire
local.indexed.atWOS
local.indexed.atScopus

Dosyalar

Koleksiyonlar