Yayın:
A Variety of Novel Exact Solutions for Different Models With the Conformable Derivative in Shallow Water

dc.contributor.authorDipankar Kumar
dc.contributor.authorDipankar Kumar
dc.contributor.authorMelike Kaplan
dc.contributor.authorMd. Rabiul Haque
dc.contributor.authorOsman, M. S.
dc.contributor.authorOsman, M. S.
dc.contributor.authorDumitru Baleanu
dc.contributor.authorDumitru Baleanu
dc.contributor.authorDumitru Baleanu
dc.date.accessioned2026-01-04T14:13:40Z
dc.date.issued2020-06-16
dc.description.abstractPour différents modèles de dérivées non linéaires conformes au temps, un gadget intégré polyvalent, à savoir la méthode généralisée exp(-φ(ξ)) -expansion (GEE), est consacré à la récupération de différentes catégories de nouvelles solutions explicites. Ces modèles comprennent l'onde longue approximative fractionnaire dans le temps, les équations de Boussinesq variant fractionnaire dans le temps et le système d'équations de Wu-Zhang fractionnaire dans le temps. La technique GEE est étudiée à l'aide d'une transformée complexe fractionnaire et d'un dérivé conformable. En conséquence, nous avons trouvé quatre types de solutions exactes impliquant des solutions de fonction hyperbolique, de fonction périodique, de fonction rationnelle et de fonction exponentielle. La signification physique des solutions explorées dépend du choix de valeurs de paramètres arbitraires. Enfin, nous concluons que la méthode GEE est efficace pour établir les nouvelles solutions exactes explicites plutôt que la méthode d'expansion exp(-φ(ξ)).
dc.description.abstractPara diferentes modelos derivados no lineales conformables en el tiempo, un gadget incorporado versátil, a saber, el método generalizado de expansión (GEE) exp⁡ (-φ ()), se dedica a recuperar diferentes categorías de nuevas soluciones explícitas. Estos modelos incluyen la onda larga aproximada fraccionaria en el tiempo, la variante fraccionaria en el tiempo, las ecuaciones de Boussinesq y el sistema de ecuaciones de Wu-Zhang fraccionarias en el tiempo. La técnica GEE se investiga con la ayuda de la transformada compleja fraccionaria y la derivada conformable. Como resultado, encontramos cuatro tipos de soluciones exactas que involucran soluciones de función hiperbólica, función periódica, función racional funcional y función exponencial. La importancia física de las soluciones exploradas depende de la elección de valores de parámetros arbitrarios. Finalmente, concluimos que el método de GEE es efectivo para establecer las nuevas soluciones exactas explícitas en lugar del método de expansión exp.
dc.description.abstractFor different nonlinear time conformable derivative models, a versatile built-in gadget namely the generalized exp⁡(-φ(ξ))-expansion (GEE) method is devoted to retrieving different categories of new explicit solutions. These models include the time fractional approximate long wave, the time fractional variant-Boussinesq equations and the time fractional Wu-Zhang system of equations. The GEE technique is investigated with the help of fractional complex transform and conformable derivative. As a result, we found four types of exact solutions involving hyperbolic function, periodic function, rational functional, and exponential function solutions. The physical significance of the explored solutions depends on the choice of arbitrary parameter values. Finally, we conclude that the GEE method is effective to establish the explicit new exact solutions rather than exp⁡(-φ(ξ))-expansion method.
dc.description.abstractبالنسبة لنماذج المشتقات المختلفة المتوافقة مع الوقت غير الخطية، يتم تخصيص أداة مدمجة متعددة الاستخدامات وهي طريقة التوسع المعمم (- φ (ḳ)) لاسترداد فئات مختلفة من الحلول الصريحة الجديدة. تتضمن هذه النماذج الموجة الطويلة التقريبية الزمنية، ومعادلات بوسينسك المتغيرة الزمنية، ونظام وو تشانغ الكسري الزمني للمعادلات. يتم فحص تقنية GEE بمساعدة التحويل المركب الكسري والمشتقات المتوافقة. ونتيجة لذلك، وجدنا أربعة أنواع من الحلول الدقيقة التي تتضمن حلول الدالة الزائدية والدالة الدورية والدالة الكسرية والدالة الأسية. تعتمد الأهمية المادية للحلول المستكشفة على اختيار قيم المعلمات التعسفية. أخيرًا، نستنتج أن طريقة GEE فعالة في إنشاء الحلول الدقيقة الجديدة الصريحة بدلاً من طريقة التوسع (- φ (ე)).
dc.description.urihttps://doi.org/10.3389/fphy.2020.00177
dc.description.urihttps://www.frontiersin.org/articles/10.3389/fphy.2020.00177/pdf
dc.description.urihttps://dx.doi.org/10.60692/ew5ay-bq506
dc.description.urihttps://dx.doi.org/10.60692/dnb2f-67s91
dc.description.urihttps://doaj.org/article/7fd14f75714848b1b81e7f3b95fc0623
dc.description.urihttps://dx.doi.org/10.3389/fphy.2020.00177
dc.identifier.doi10.3389/fphy.2020.00177
dc.identifier.eissn2296-424X
dc.identifier.openairedoi_dedup___::360e018496d1805e015a3f4a0c1128f4
dc.identifier.orcid0000-0003-2949-166x
dc.identifier.orcid0000-0001-5700-9127
dc.identifier.orcid0000-0002-5783-0940
dc.identifier.scopus2-s2.0-85087181957
dc.identifier.urihttps://hdl.handle.net/20.500.12597/38030
dc.identifier.volume8
dc.identifier.wos000546242600001
dc.publisherFrontiers Media SA
dc.relation.ispartofFrontiers in Physics
dc.rightsOPEN
dc.subjectFinancial economics
dc.subjecttime-fractional approximate long-wave equations
dc.subjectEconomics
dc.subjectQC1-999
dc.subjectVariety (cybernetics)
dc.subjectEvolutionary biology
dc.subjectConformable matrix
dc.subjectexact solutions
dc.subjectPeriodic Wave Solutions
dc.subjectMathematical analysis
dc.subjectQuantum mechanics
dc.subjectDiscrete Solitons in Nonlinear Photonic Systems
dc.subjectthe GEE method
dc.subjectFOS: Mathematics
dc.subjecttime-fractional Wu-Zhang system of equations
dc.subjecttime-fractional variant-Boussinesq equations
dc.subjectBiology
dc.subjectAnomalous Diffusion Modeling and Analysis
dc.subjectPhysics
dc.subjectExponential function
dc.subjectStatistics
dc.subjectFractional calculus
dc.subjectRational function
dc.subjectStatistical and Nonlinear Physics
dc.subjectApplied mathematics
dc.subjectFractional Derivatives
dc.subjectPhysics and Astronomy
dc.subjectFunction (biology)
dc.subjectModeling and Simulation
dc.subjectDerivative (finance)
dc.subjectPhysical Sciences
dc.subjectNonlinear system
dc.subjectMathematics
dc.subjectRogue Waves in Nonlinear Systems
dc.titleA Variety of Novel Exact Solutions for Different Models With the Conformable Derivative in Shallow Water
dc.typeArticle
dspace.entity.typePublication
local.api.response{"authors":[{"fullName":"Dipankar Kumar","name":null,"surname":null,"rank":1,"pid":{"id":{"scheme":"orcid","value":"0000-0003-2949-166x"},"provenance":null}},{"fullName":"Dipankar Kumar","name":null,"surname":null,"rank":2,"pid":null},{"fullName":"Melike Kaplan","name":null,"surname":null,"rank":3,"pid":{"id":{"scheme":"orcid","value":"0000-0001-5700-9127"},"provenance":null}},{"fullName":"Md. Rabiul Haque","name":null,"surname":null,"rank":4,"pid":null},{"fullName":"M. S. Osman","name":"M. S.","surname":"Osman","rank":5,"pid":{"id":{"scheme":"orcid","value":"0000-0002-5783-0940"},"provenance":null}},{"fullName":"M. S. Osman","name":"M. S.","surname":"Osman","rank":6,"pid":null},{"fullName":"Dumitru Baleanu","name":null,"surname":null,"rank":7,"pid":null},{"fullName":"Dumitru Baleanu","name":null,"surname":null,"rank":8,"pid":null},{"fullName":"Dumitru Baleanu","name":null,"surname":null,"rank":9,"pid":null}],"openAccessColor":"gold","publiclyFunded":false,"type":"publication","language":{"code":"und","label":"Undetermined"},"countries":null,"subjects":[{"subject":{"scheme":"keyword","value":"Financial economics"},"provenance":null},{"subject":{"scheme":"keyword","value":"time-fractional approximate long-wave equations"},"provenance":null},{"subject":{"scheme":"keyword","value":"Economics"},"provenance":null},{"subject":{"scheme":"keyword","value":"QC1-999"},"provenance":null},{"subject":{"scheme":"keyword","value":"Variety (cybernetics)"},"provenance":null},{"subject":{"scheme":"keyword","value":"Evolutionary biology"},"provenance":null},{"subject":{"scheme":"keyword","value":"Conformable matrix"},"provenance":null},{"subject":{"scheme":"keyword","value":"exact solutions"},"provenance":null},{"subject":{"scheme":"keyword","value":"Periodic Wave Solutions"},"provenance":null},{"subject":{"scheme":"keyword","value":"Mathematical analysis"},"provenance":null},{"subject":{"scheme":"keyword","value":"Quantum mechanics"},"provenance":null},{"subject":{"scheme":"FOS","value":"01 natural sciences"},"provenance":null},{"subject":{"scheme":"keyword","value":"Discrete Solitons in Nonlinear Photonic Systems"},"provenance":null},{"subject":{"scheme":"keyword","value":"the GEE method"},"provenance":null},{"subject":{"scheme":"FOS","value":"0103 physical sciences"},"provenance":null},{"subject":{"scheme":"keyword","value":"FOS: Mathematics"},"provenance":null},{"subject":{"scheme":"keyword","value":"time-fractional Wu-Zhang system of equations"},"provenance":null},{"subject":{"scheme":"keyword","value":"time-fractional variant-Boussinesq equations"},"provenance":null},{"subject":{"scheme":"keyword","value":"Biology"},"provenance":null},{"subject":{"scheme":"keyword","value":"Anomalous Diffusion Modeling and Analysis"},"provenance":null},{"subject":{"scheme":"keyword","value":"Physics"},"provenance":null},{"subject":{"scheme":"keyword","value":"Exponential function"},"provenance":null},{"subject":{"scheme":"keyword","value":"Statistics"},"provenance":null},{"subject":{"scheme":"keyword","value":"Fractional calculus"},"provenance":null},{"subject":{"scheme":"keyword","value":"Rational function"},"provenance":null},{"subject":{"scheme":"keyword","value":"Statistical and Nonlinear Physics"},"provenance":null},{"subject":{"scheme":"keyword","value":"Applied mathematics"},"provenance":null},{"subject":{"scheme":"keyword","value":"Fractional Derivatives"},"provenance":null},{"subject":{"scheme":"keyword","value":"Physics and Astronomy"},"provenance":null},{"subject":{"scheme":"keyword","value":"Function (biology)"},"provenance":null},{"subject":{"scheme":"keyword","value":"Modeling and Simulation"},"provenance":null},{"subject":{"scheme":"keyword","value":"Derivative (finance)"},"provenance":null},{"subject":{"scheme":"keyword","value":"Physical Sciences"},"provenance":null},{"subject":{"scheme":"keyword","value":"Nonlinear system"},"provenance":null},{"subject":{"scheme":"keyword","value":"Mathematics"},"provenance":null},{"subject":{"scheme":"keyword","value":"Rogue Waves in Nonlinear Systems"},"provenance":null}],"mainTitle":"A Variety of Novel Exact Solutions for Different Models With the Conformable Derivative in Shallow Water","subTitle":null,"descriptions":["Pour différents modèles de dérivées non linéaires conformes au temps, un gadget intégré polyvalent, à savoir la méthode généralisée exp(-φ(ξ)) -expansion (GEE), est consacré à la récupération de différentes catégories de nouvelles solutions explicites. Ces modèles comprennent l'onde longue approximative fractionnaire dans le temps, les équations de Boussinesq variant fractionnaire dans le temps et le système d'équations de Wu-Zhang fractionnaire dans le temps. La technique GEE est étudiée à l'aide d'une transformée complexe fractionnaire et d'un dérivé conformable. En conséquence, nous avons trouvé quatre types de solutions exactes impliquant des solutions de fonction hyperbolique, de fonction périodique, de fonction rationnelle et de fonction exponentielle. La signification physique des solutions explorées dépend du choix de valeurs de paramètres arbitraires. Enfin, nous concluons que la méthode GEE est efficace pour établir les nouvelles solutions exactes explicites plutôt que la méthode d'expansion exp(-φ(ξ)).","Para diferentes modelos derivados no lineales conformables en el tiempo, un gadget incorporado versátil, a saber, el método generalizado de expansión (GEE) exp⁡ (-φ ()), se dedica a recuperar diferentes categorías de nuevas soluciones explícitas. Estos modelos incluyen la onda larga aproximada fraccionaria en el tiempo, la variante fraccionaria en el tiempo, las ecuaciones de Boussinesq y el sistema de ecuaciones de Wu-Zhang fraccionarias en el tiempo. La técnica GEE se investiga con la ayuda de la transformada compleja fraccionaria y la derivada conformable. Como resultado, encontramos cuatro tipos de soluciones exactas que involucran soluciones de función hiperbólica, función periódica, función racional funcional y función exponencial. La importancia física de las soluciones exploradas depende de la elección de valores de parámetros arbitrarios. Finalmente, concluimos que el método de GEE es efectivo para establecer las nuevas soluciones exactas explícitas en lugar del método de expansión exp.","For different nonlinear time conformable derivative models, a versatile built-in gadget namely the generalized exp⁡(-φ(ξ))-expansion (GEE) method is devoted to retrieving different categories of new explicit solutions. These models include the time fractional approximate long wave, the time fractional variant-Boussinesq equations and the time fractional Wu-Zhang system of equations. The GEE technique is investigated with the help of fractional complex transform and conformable derivative. As a result, we found four types of exact solutions involving hyperbolic function, periodic function, rational functional, and exponential function solutions. The physical significance of the explored solutions depends on the choice of arbitrary parameter values. Finally, we conclude that the GEE method is effective to establish the explicit new exact solutions rather than exp⁡(-φ(ξ))-expansion method.","بالنسبة لنماذج المشتقات المختلفة المتوافقة مع الوقت غير الخطية، يتم تخصيص أداة مدمجة متعددة الاستخدامات وهي طريقة التوسع المعمم (- φ (ḳ)) لاسترداد فئات مختلفة من الحلول الصريحة الجديدة. تتضمن هذه النماذج الموجة الطويلة التقريبية الزمنية، ومعادلات بوسينسك المتغيرة الزمنية، ونظام وو تشانغ الكسري الزمني للمعادلات. يتم فحص تقنية GEE بمساعدة التحويل المركب الكسري والمشتقات المتوافقة. ونتيجة لذلك، وجدنا أربعة أنواع من الحلول الدقيقة التي تتضمن حلول الدالة الزائدية والدالة الدورية والدالة الكسرية والدالة الأسية. تعتمد الأهمية المادية للحلول المستكشفة على اختيار قيم المعلمات التعسفية. أخيرًا، نستنتج أن طريقة GEE فعالة في إنشاء الحلول الدقيقة الجديدة الصريحة بدلاً من طريقة التوسع (- φ (ე))."],"publicationDate":"2020-06-16","publisher":"Frontiers Media SA","embargoEndDate":null,"sources":["Crossref","Frontiers in Physics, Vol 8 (2020)"],"formats":null,"contributors":null,"coverages":null,"bestAccessRight":{"code":"c_abf2","label":"OPEN","scheme":"http://vocabularies.coar-repositories.org/documentation/access_rights/"},"container":{"name":"Frontiers in Physics","issnPrinted":null,"issnOnline":"2296-424X","issnLinking":null,"ep":null,"iss":null,"sp":null,"vol":"8","edition":null,"conferencePlace":null,"conferenceDate":null},"documentationUrls":null,"codeRepositoryUrl":null,"programmingLanguage":null,"contactPeople":null,"contactGroups":null,"tools":null,"size":null,"version":null,"geoLocations":null,"id":"doi_dedup___::360e018496d1805e015a3f4a0c1128f4","originalIds":["10.3389/fphy.2020.00177","50|doiboost____|360e018496d1805e015a3f4a0c1128f4","50|datacite____::2761fc9f40d142896f299bb684419182","10.60692/ew5ay-bq506","50|datacite____::936196f699de1cea7517bd788e7e7010","10.60692/dnb2f-67s91","oai:doaj.org/article:7fd14f75714848b1b81e7f3b95fc0623","50|doajarticles::bd64e8ce509183d49145718deab7f6eb","3036314142"],"pids":[{"scheme":"doi","value":"10.3389/fphy.2020.00177"},{"scheme":"doi","value":"10.60692/ew5ay-bq506"},{"scheme":"doi","value":"10.60692/dnb2f-67s91"}],"dateOfCollection":null,"lastUpdateTimeStamp":null,"indicators":{"citationImpact":{"citationCount":30,"influence":3.9529326e-9,"popularity":2.3302137e-8,"impulse":28,"citationClass":"C4","influenceClass":"C4","impulseClass":"C4","popularityClass":"C4"}},"instances":[{"pids":[{"scheme":"doi","value":"10.3389/fphy.2020.00177"}],"license":"CC BY","type":"Article","urls":["https://doi.org/10.3389/fphy.2020.00177"],"publicationDate":"2020-06-16","refereed":"peerReviewed"},{"pids":[{"scheme":"doi","value":"10.3389/fphy.2020.00177"}],"license":"CC BY","type":"Article","urls":["https://www.frontiersin.org/articles/10.3389/fphy.2020.00177/pdf"],"refereed":"nonPeerReviewed"},{"pids":[{"scheme":"doi","value":"10.60692/ew5ay-bq506"}],"type":"Other literature type","urls":["https://dx.doi.org/10.60692/ew5ay-bq506"],"publicationDate":"2020-06-16","refereed":"nonPeerReviewed"},{"pids":[{"scheme":"doi","value":"10.60692/dnb2f-67s91"}],"type":"Other literature type","urls":["https://dx.doi.org/10.60692/dnb2f-67s91"],"publicationDate":"2020-06-16","refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"doi","value":"10.3389/fphy.2020.00177"}],"type":"Article","urls":["https://doaj.org/article/7fd14f75714848b1b81e7f3b95fc0623"],"publicationDate":"2020-06-01","refereed":"nonPeerReviewed"},{"alternateIdentifiers":[{"scheme":"mag_id","value":"3036314142"},{"scheme":"doi","value":"10.3389/fphy.2020.00177"}],"type":"Article","urls":["https://dx.doi.org/10.3389/fphy.2020.00177"],"refereed":"nonPeerReviewed"}],"isGreen":false,"isInDiamondJournal":false}
local.import.sourceOpenAire
local.indexed.atWOS
local.indexed.atScopus

Dosyalar

Koleksiyonlar