Browsing by Author "Zalaoglu, Y"
Now showing 1 - 10 of 10
- Results Per Page
- Sort Options
Web of Science A Study on Magnetoresistivity, Activation Energy, Irreversibility and Upper Critical Field of Slightly Mn Added Bi-2223 Superconductor Ceramics(2012.01.01) Dogruer, M; Zalaoglu, Y; Varilci, A; Terzioglu, C; Yildirim, G; Ozturk, OWeb of Science Comparative study on mechanical properties of undoped and Ce-doped Bi-2212 superconductors(2013.01.01) Zalaoglu, Y; Bekiroglu, E; Dogruer, M; Yildirim, G; Ozturk, O; Terzioglu, CWeb of Science Effect of Ce Addition on the Magnetoresistivity, Irreversibility Field, Upper Critical Field and Activation Energies of Bi-2212 Superconducting Ceramics(2012.01.01) Yildirim, G; Dogruer, M; Ozturk, O; Varilci, A; Terzioglu, C; Zalaoglu, YWeb of Science Effect of homovalent Bi/Ga substitution on propagations of flaws, dislocations and crack in Bi-2212 superconducting ceramics: Evaluation of new operable slip systems with substitution(2019.01.01) Turkoz, MB; Zalaoglu, Y; Turgay, T; Ozturk, O; Yildirim, GWeb of Science Evaluation of key mechanical design properties and mechanical characteristic features of advanced Bi-2212 ceramic materials with homovalent Bi/Ga partial replacement: Combination of experimental and theoretical approaches(2019.01.01) Turkoz, MB; Zalaoglu, Y; Turgay, T; Ozturk, O; Akkurt, B; Yildirim, GWeb of Science Evaluation of Microstructural and Mechanical Properties of Ag-Diffused Bulk MgB2 Superconductors(2014.01.01) Yilmazlar, M; Terzioglu, C; Dogruer, M; Karaboga, F; Soylu, N; Zalaoglu, Y; Yildirim, G; Ozturk, OWeb of Science Influence of diffusion-annealing temperature on physical and mechanical properties of Cu-diffused bulk MgB2 superconductor(2013.01.01) Dogruer, M; Zalaoglu, Y; Gorur, O; Ozturk, O; Yildirim, G; Varilci, A; Yucel, E; Terzioglu, CWeb of Science Quantum chemical calculations and interpretation of electronic transitions and spectroscopic characteristics belonging to 1-(3-Mesityl-3-methylcyclobutyl)-2-(naphthalene-1-yloxy)ethanone(2015.01.01) Koca, M; Arici, C; Muglu, H; Vurdu, CD; Kandemirli, F; Zalaoglu, Y; Yildirim, GPubmed Quantum chemical calculations and interpretation of electronic transitions and spectroscopic characteristics belonging to 1-(3-Mesityl-3-methylcyclobutyl)-2-(naphthalene-1-yloxy)ethanone.(2015-02-25T00:00:00Z) Koca, M; Arici, C; Muglu, H; Vurdu, C D; Kandemirli, F; Zalaoglu, Y; Yildirim, GThis comprehensive study reports the synthesis of the title compound, 1-(3-Mesityl-3-methylcyclobutyl)-2-(naphthalene-1-yloxy)ethanone (C26H28O2), and identification of the molecule by means of the standard experimental methods such as single-crystal X-ray diffraction, ultra violet-visible (UV-vis) spectra, Fourier transform infrared (FTIR) spectra, (13)C and (1)H NMR chemical shifts and quantum chemical calculations using density functional theory (B3LYP) method for the first time. The experimental results observed display that the synthesis of the C26H28O2 compound is perfectly conducted without any impurities. Additionally, the little deviations are noticed on the bond lengths and bond angles, confirming that the strong intra-molecular charge transfers appear in the due to the presence of the electron engagements and conjugative effects (bond weakening). Besides, the intermolecular C-H⋯O distance presents the interaction between the methylcyclobutyl C-H group and oxygen atom in the ethanone group. At the same time, the absorption wavelength (λmax) appears at 292 nm and interval 297-269 nm in the solvent of chloroform and THF as a consequence of the presence of effective π-π(∗) conjugated segments in the molecule studied. Besides, optical band gap energy of 3.22/3.25 eV (chloroform/THF), verifies the existence of the strong electronic donating groups in the structure. As for the quantum chemical computations, the determination of the optimized molecular structures, vibrational frequencies including infrared intensities, vibrational wavenumbers, thermodynamic properties, atomic charges, electronic transitions, dipole moment (charge distribution), optical band gap energy, (1)H and (13)C NMR chemical shifts are conducted using density functional theory/Becke-3-Lee-Yang-Parr (DFT/B3LYP) method with the standard 6-311++G(2d,2p) level of theory. The results obtained show that the strong intra-molecular charge transfer (ICT) appears between the donor and acceptor in the title compound due to the existence of the strong electronic donating groups and effective π-π(∗) conjugated segments with high electronic donor ability for the electrophilic attack (intermolecular interactions). Additionally, the presence of the non-uniform charge distributions (polar behavior) on the various atoms makes the title compound be useful to bond metallically.Web of Science Role of diffusion-annealing time on the superconducting, microstructural and mechanical properties of Cu-diffused bulk MgB2 superconductor(2013.01.01) Dogruer, M; Gorur, O; Zalaoglu, Y; Ozturk, O; Yildirim, G; Varilci, A; Terzioglu, C