Browsing by Author "Yorur H."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Scopus Effects of factors on direct screw withdrawal resistance in medium density fiberboard and particleboard(2020-01-01) Yorur H.; Birinci E.; Gunay M.N.; Tor O.An increase in demand on solid wood that is insufficient supply to meet in the world necessarily directed to other engineering materials that could be an alternative to the solid wood. In this context, instead of using solid wood in furniture and construction industry, wood-based panels such as medium density fiberboard (MDF) and particleboard (PB) have become widely used as construction material. Limited research has been done in the field of fastener performance as mechanical properties with different parameters in the joints constructed with these panels. Therefore, in this study, the parameters of screw type, pilot hole, screw orientation, water treatment and adhesives were investigated in MDF and PB. The results indicated that the highest direct screw withdrawal (DSW) resistance was observed in the test blocks applied with PU and the lowest DSW resistance was in the test blocks without a pilot hole drilled in both materials. In addition, MDF in general had better DSW resistance than PB in almost all combinations of the parameters. The treatment of water into MDF and PB test blocks negatively affects the DSW resistance. The DSW resistance in the face orientation was found to be higher than the corresponding ones in the side orientation in both materials.Scopus Renewable Hybrid Roadside Barrier: Optimization of Timber Thickness(2023-02-01) Yorur H.; Ozcanan S.; Yumrutas H.I.; Birinci E.Researchers have recently focused on new and original roadside barriers that prioritize aesthetic, and environmental concerns by employing natural materials. In this study, the safety performance (Acceleration Severity Index (ASI), Theorical Head Impact Velocity (THIV)), structural performance (Working Width (W), Exit Angle (α)), and failure analysis (visual deformation) of a newly developed Renewable Hybrid Barrier (RHB) system at different timber thicknesses were tried to be determined by pendulum crash test and Finite Element (FE) models. The FE models were calibrated and validated based on pendulum crash test results, and then the most suitable timber thickness in terms of safety and structural performance was determined via FE analyses. The results revealed that as the timber thickness decreased, the safety parameters, such as ASI and THIV, decreased, thus the barrier safety increased. However, it was observed that the deflection and deformations in the barrier increased as the timber thickness decreased. In this sense, the safest and the most structurally durable barrier was determined through conducting virtual optimization tests. Studies on diversification of the usage areas of natural/renewable materials should be increased in the future.