Browsing by Author "Yildirim G."
Now showing 1 - 20 of 30
- Results Per Page
- Sort Options
Scopus A comprehensive study on mechanical properties of Bi1.8Pb 0.4Sr2MnxCa2.2Cu3.0O y superconductors(2013-08-01) Dogruer M.; Karaboga F.; Yildirim G.; Terzioglu C.; Ozturk O.This study manifests the crucial change in the mechanical performances of Bi1.8Pb0.4Sr2MnxCa 2.2Cu3.0Oy superconductor samples (x = 0, 0.03, 0.06, 0.15, 0.3 and 0.6) prepared by conventional solid-state reaction method by use of Vickers microhardness (Hv) measurements carried out at different applied loads, (0.245 N ≤ F ≤ 2.940 N). Load dependent microhardness, load independent microhardness, Young's (elastic) modulus and yield strength values being account for the potential technological and industrial applications are evaluated from the hardness curves and compared with each other. It is found that the Hv, elastic modulus and yield strength obtained decrease (increase) with the enhancement of the applied load for the undoped (doped) samples. Surprisingly, the results of the Hv values illustrate that the samples doped with x = 0.03, 0.06, 0.15, 0.3 and 0.6 exhibit reverse indentation size effect (RISE) feature whereas the pure sample obeys indentation size effect (ISE) behavior. Furthermore, the experimental results are examined with the aid of the available methods such as Meyer's law, proportional sample resistance model (PSR), elastic/plastic deformation (EPD), Hays-Kendall (HK) approach and indentation-induced cracking (IIC) model. The results inferred show that the hardness values calculated by PSR and EPD models are far from the values of the plateau region, meaning that these models are not adequate approaches to determine the real microhardness value of the Mn doped Bi-2223 materials. On the other hand, the HK approach is completely successful for the explanation of the ISE nature for the pure sample while the IIC model is obtained to be the best model to describe the hardness values of the doped materials exhibiting the RISE behavior. Additionally, the bulk porosity analysis for the samples reveals that the porosity increases monotonously with the increment in the Mn inclusions inserted in the Bi-2223 system, presenting the degradation of the grain connectivity. © 2013 Springer Science+Business Media New York.Scopus A study on magnetoresistivity, activation energy, irreversibility and upper critical field of slightly Mn added Bi-2223 superconductor ceramics(2012-05-01) Dogruer M.; Zalaoglu Y.; Varilci A.; Terzioglu C.; Yildirim G.; Ozturk O.This study discusses the effect of Mn addition on the superconducting and physical properties in Bi 1.8Pb 0.4Sr 2Mn xCa 2.2Cu 3.0O y bulk superconductors with x = 0, 0.03,0.06,0.15, 0.3, and 0.6 by means of themagne-toresistivity measurements. The magnetoresistivity of the samples prepared using the standard solid-state reaction method was measured for different values of the applied magnetic field strengths. The superconducting and physical properties of the samples such as the zero resistivity transition temperatures (T c), irreversibility fields (μ 0Hi rr), and upper critical fields (μ 0H c2) were deduced from the magnetoresistivity curves. Moreover, thermally activated flux creep model was studied for activation energy (U0) values of the samples. According to the results of the measurements, not only were the T c and U0 values of the samples found to decrease significantly but the μ 0Hi rr and μ 0H c2 values were also observed to reduce with the increase in the Mn addition, indicating that the doping degrades the physical and superconducting properties of the samples. © 2012 Springer Science+Business Media, LLC.Scopus Analysis of indentation size effect on mechanical properties of Cu-diffused bulk MgB2 superconductor using experimental and different theoretical models(2013-01-01) Dogruer M.; Yildirim G.; Ozturk O.; Terzioglu C.This study indicates the change of the electrical, microstructural, physical, mechanical and superconducting properties of Cu-diffused bulk MgB 2 superconductors by means of scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), microhardness and dc resistivity measurements. The samples are prepared at different annealing temperatures in the range from 650 to 850 â̂̃C. Electrical and superconducting properties of samples are estimated from the dc electrical resistivity measurements. Moreover, microhardness measurements are performed to investigate the mechanical properties. Further, phase composition, grain sizes and lattice parameters are determined from the XRD measurements. At the same time, the surface morphology and grain connectivity of the samples are examined by SEM investigations. The measurements conducted demonstrate that both the Cu diffusion into the MgB2 system and the increment in the diffusion-annealing temperature increase the critical transition temperatures. Similarly, microstructure and grain size improve while the voids and porosity decrease with the increase of the diffusion-annealing temperature. In addition, the experimental results of the microhardness measurements are investigated using the Meyer's law, PSR (proportional specimen resistance), modified PRS (MPSR), elastic-plastic deformation model (EPD) and Hays-Kendall (HK) approach. The obtained microhardness values of the samples decrease with the increase of the diffusion-annealing temperature up to 850 â̂̃C. The Hays-Kendall approach is found to be the most successful model describing the mechanical properties of the samples studied in this work. © 2012 Springer Science+Business Media, LLC.Scopus Breaking point of the harmony between Gd diffused Bi-2223 slabs with diffusion annealing temperature(2013-01-01) Aydın H.; Babanli A.; Altintas S.; Asikuzun E.; Soylu N.; Ozturk O.; Dogruer M.; Terzioglu C.; Yildirim G.This comprehensive study reports the role of annealing temperature on the microstructural, superconducting and mechanical characteristics of the Gd diffused Bi-2223 superconducting ceramics produced by the conventional solid-state reaction route at 840 C for the annealing duration of 48 h. For the material characterization, the standard experimental methods such as dc resistivity (ρ-T), transport critical current density, X-ray powder diffraction, scanning electron microscopy and Vickers microhardness measurements are performed systematically. All the results obtained show that all the measured characteristic properties, being in charge of the applications in the industry, engineering and technology, improve until a certain diffusion annealing temperature of 800 C beyond which they tend to degrade considerably. The increase in the properties is mostly related to the transition from the inherent overdoped state of the pure Bi-2223 material to optimum doped state with the diffusion annealing temperature, confirming the penetration of the sufficient Gd nanoparticles into the crystal structure. On the other hand, the suppression in the superconducting properties stems from the appearance of the porosity, defects, disorder and localization problem in the polycrystalline Bi-2223 superconducting matrix. This is attributed to the decrement of the average crystallite size and mobile hole concentration in the Cu-O 2 layers and especially the retrogression of the crystallinity in the system. As for the mechanical characteristics, Vickers microhardness measurements exerted in the applied indentation test load range of 0.245-2.940 N indicate that the Gd diffused bulk superconducting samples exhibit the typical indentation size effect behavior. With the enhancement in the annealing temperature up to 800 C, the significant increase in the elastic modulus, yield strength and fracture toughness is one of the most striking points in the paper. The long and short of it is that the excess diffusion annealing temperature damages the fundamental characteristics of the Bi-2223 system. © 2013 Springer Science+Business Media New York.Scopus Change of formation velocity of Bi-2212 superconducting phase with annealing ambient(2013-11-01) Ozturk O.; Yildirim G.; Asikuzun E.; Coskunyurek M.; Yilmazlar M.; Kilic A.This exhaustive study enables the researchers to recognize the role of the annealing conditions (temperature and time) on the microstructural, mechanical, electrical and superconducting properties of the Bi-2212 superconducting material with the aid of ρ-T, X-ray diffraction, scanning electron microscopy and Vickers microhardness (Hv) measurements. For this aim, the superconducting samples are elaborated by standard solid-state reaction route at different annealing temperature and different annealing duration. The results show that the annealing temperature of 840 C and the annealing duration of 72 h are the best for the formation velocity of Bi-2212 superconducting phase. In this study we have focused on microhardness measurements to investigate the mechanical properties. Vickers microhardness, Young's modulus, fracture toughness and yield strength values are calculated separately for all samples. Experimental results of hardness measurements are analyzed using the some models. Finally, the Hays-Kendall model is determined as the most successful model describing the mechanical properties of our samples. © 2013 Springer Science+Business Media New York.Scopus Comparative study on mechanical properties of undoped and Ce-doped Bi-2212 superconductors(2013-07-01) Zalaoglu Y.; Bekiroglu E.; Dogruer M.; Yildirim G.; Ozturk O.; Terzioglu C.This study discusses the mechanical performances of Bi1.8Sr 2.0CexCa1.1Cu2.1Oy ceramics with x = 0, 0.001, 0.003, 0.005, 0.01, 0.03, 0.05 and 0.1 by way of Vickers microhardness (Hv) measurements performed at different applied loads in the range of 0.245-2.940 N. For the potential industrial applications, the important mechanical characteristics such as Vickers microhardness, elastic modulus, yield strength, fracture toughness and brittleness index values of the samples studied are extracted from the microhardness measurements. All the results obtained indicate that the Vickers hardness, Young's (elastic) modulus, yield strength, fracture toughness and brittleness index values suppress with the increment of the Ce concentration in the system as a consequence of the degradation in the connectivity between superconducting grains. The decrement in the Hv values with the applied load is attributed Indentation Size Effect behaviour of the samples studied. Moreover, the experimental results of Vickers microhardness measurements are estimated using the 5 different models such as Kick's law, proportional sample resistance model, modified proportional sample resistance model, elastic/plastic deformation model and Hays-Kendall approach. According to the results obtained from the simulations, Kick's law is not useful model to obtain information about the origin of the indentation size effect feature of the Ce-doped bulk Bi-2212 superconductors. On the other hand, the Hays-Kendall approach is determined as the most suitable model for the description of the mechanical properties of the superconducting samples. In addition, the bulk porosity analysis for the samples reveals that the porosity increases monotonously with the Ce inclusion in the Bi-2212, leading to the degradation of the grain connectivity. © 2013 Springer Science+Business Media New York.Scopus Effect of Ce addition on the magnetoresistivity, irreversibility field, upper critical field and activation energies of Bi-2212 superconducting ceramics(2012-05-01) Yildirim G.; Dogruer M.; Ozturk O.; Varilci A.; Terzioglu C.; Zalaoglu Y.This study aims to analyze the effect of Ce addition on the microstructural, superconducting and physical properties of Bi 1.8Sr 2.0CexCa 1.1Cu 2.1O y ceramics with x = 0, 0.001, 0.003, 0.005, 0.01, 0.03, 0.05 and 0.1 via X-Ray analysis (XRD), scanning electron microscopy (SEM), electron dispersive X-Ray (EDX) and magnetoresistivity measurements. The ceramics produced in this work are prepared using the standard solid-state reaction method. The zero resistivity transition temperatures (T c), activation energies (U0), irreversibility fields (μ 0Hi rr) and upper critical fields (μ 0H c2) are determined from the resistivity versus temperature (R-T) curves under dc magnetic fields up to 7 T The results show that T c and U0 values of the samples are found to decrease dramatically with the increase in the Ce-content and applied magnetic field. Moreover, XRD results indicate that all the samples contain the Bi-2212 phase only and exhibit the polycrystalline superconducting phase with less intensity of diffraction lines with the increase of the Ce addition. As for the results of SEM images, the texturing, crystallinity, grain size distribution, layered grain growth and grain connectivity are observed to degrade with the increase of the Ce doping. Besides, the irreversibility fields and upper critical fields are found to degrade as Ce doping increases. Penetration depths (λ) and coherence lengths (ξ) are also discussed. © 2012 Springer Science+Business Media, LLC.Scopus Effect of Co/Cu partial replacement on fundamental features of Y-123 ceramics(2020-05-01) Ozturk O.; Nefrow A.R.A.; Bulut F.; Ada H.; Turkoz M.B.; Yildirim G.This study is liable for the effect of sample production processes including the standard solid-state reaction (SSR) and classical sol–gel (SG) preparation methods on the fundamental characteristic features, namely electrical, superconducting, crystal structure quality, crystallinity, morphological, strength quality of grain boundary couplings, and interaction between the grains of YBa2Cu3−xCoxO7−δ (Y-123) advanced ceramic compounds within the weight ratio intervals x = 0–20%. The main heat treatments are exerted at two main steps: (I) annealing at 950 °C for 24 h in air medium conditions and (II) annealing at 500 °C during 5 h under the oxygen annealing ambient. The standard measurement methods such as powder X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, temperature-dependent electrical resistance, and Vickers hardness measurements are performed for the characterization of materials. It is found that the samples prepared at SSR route present much more superior characteristic features as compared to those fabricated at SG technique, being one of the most striking points deduced this work. In more detail, every material prepared crystallizes in the orthorhombic symmetry and exhibits the superconducting nature but considerable decrement in the critical transition temperatures. The onset and offset transition temperatures are noted to decrease regularly from 92.96 K (92.28 K) to 90.20 K (83.59 K); and 90.05 K (90.03 K) to 45.97 K (30.49 K) for the materials prepared by the SSR (SG) route. Similarly, the variation in the lattice cell and average grain size parameters confirm that the Co/Cu substitution damages Y-123 superconducting phase. Additionally, the Co/Cu partial replacement mechanism leads to increase significantly the Vickers hardness results. To sum up, the Co/Cu partial substitution (produced by either SSR or SG method) is plowed to improve the fundamental characteristic features for new, novel, and feasible market application areas of Y-123 cuprate ceramics in the universe economy.Scopus Effect of homovalent Bi/Ga substitution on propagations of flaws, dislocations and crack in Bi-2212 superconducting ceramics: Evaluation of new operable slip systems with substitution(2019-12-01) Turkoz M.B.; Zalaoglu Y.; Turgay T.; Ozturk O.; Yildirim G.This study defines a strong methodology between the mechanical performance behaviors and formation of possible operable slip systems in the crystal structure of Bi-2212 superconducting phase with trivalent Bi/Ga substitution with the aid of Vickers hardness tests exerted at various indentation load intervals 0.245 N–2.940 N. It is found that the mechanical performance behaviors improve regularly with the increment in the trivalent Bi/Ga partial substitution level up to the value of x = 0.05 due to the formation of new operable slip systems. Namely, the optimum gallium (Ga) impurities serve as the strain fields and associated forces for the interaction of dislocations within the different orientations with each other to impose the surface residual compressive stresses orienting favorably the superconducting grains. Thus, the propagation of dislocations, flaws and cracks divert in the crystal structure. On this basis, the presence of optimum Ga impurity in the Bi-2212 crystal system strengthens the mechanical strength, critical stress, resistance to the plastic deformation, stiffness and durability nature. Moreover, the experimental results advance in-depth understanding of fundamental links between the porosity and Young's moduli of elasticity founded on the impurity level and applied test loads. It is observed that in case of the optimum level of x = 0.05 the propagation of flaws, dislocations and cracks proceed along the transgranular regions instead of the intergranular regions as a consequence of improvement in the durable tetragonal phase. On the other hand, the excess Ga content level in the polycrystalline Bi-2212 system results in the augmentation in the stress raisers, crack surface energy and crack-initiating flaws, activating the stress-induced phase transformation.Scopus Effect of Ni and Al doping on structural, optical, and CO2 gas sensing properties of 1D ZnO nanorods produced by hydrothermal method(2022-04-01) Bulut F.; Ozturk Ö.; Acar S.; Yildirim G.In the present study, the one-dimensional ZnO nanorod structures are produced within the different nickel and aluminum molecular weight ratios of 0–7% using the hydrothermal method. It is found that the aluminum (Al) and nickel (Ni) impurities with different ionic radius, chemical valence, and electron configurations of outer shell cause to vary the fundamental characteristic features including the crystallinity quality, crystallite size, surface morphology, nanorod diameter, optical absorbance, energy band gap, resistance, gas response, and gas sensing properties. The structural analyses performed by powder X-ray diffraction (XRD) and scanning electron microscopy (SEM) indicate that the samples are found to crystallize in the hexagonal wurtzite structure. The presence of optimum nickel and aluminum in the crystal system improves considerably the crystallinity quality and surface morphology. Additionally, the combination of electron dispersive X-ray (EDX) and XRD results declare that the Ni and Al impurities incorporate successfully into the ZnO crystal structure. Moreover, the diameters of nanorod structures in 1D orientation are determined to be 80 nm or below. The hexagonal wurtzite-type ZnO nanorod structure prepared by 5% Ni has more space between the nanorods and thus presents higher response to the CO2 detection. Further, the optical absorbance spectra display that the band gap value is observed to decrease regularly with the increment in the doping level as a result of band shrinkage effect depending on the enhancement of mobile hole carrier concentrations in the crystal structure. In other words, the doping mechanism leads to vary the homogeneities in the interfacial charges, nanorod diameters, ZnO oxide layer composition and thickness. The last test conducted in this study is responsible for the determination of CO2 gas sensing levels. The obtained gas sensing results are further compared with each other and literature findings. It is observed that 5% Ni-doped sample provides more successful results than other samples in the sensing CO2 gas at the different concentrations. All in all, the paper establishing a strong methodology between doping mechanism and change in the fundamental characteristic features of hexagonal wurtzite-type ZnO with the aid of advanced microscopy techniques will become pioneering research to answer key questions in materials sciences and electronic research.Scopus Evaluation of key mechanical design properties and mechanical characteristic features of advanced Bi-2212 ceramic materials with homovalent Bi/Ga partial replacement: Combination of experimental and theoretical approaches(2019-12-01) Turkoz M.; Zalaoglu Y.; Turgay T.; Ozturk O.; Akkurt B.; Yildirim G.This study models the variations in the key mechanical design properties and mechanical characteristic features of Ga substituted Bi-site Bi-2212 ceramics prepared within the different molar ratios of x = 0.000, 0.005, 0.010, 0.030, 0.050, 0.100 and 0.300 with the assistant of available theoretical approaches; namely, Meyer's law, proportional sample resistance, elastic/plastic deformation, modified proportional sample resistance model, Hays Kendall and indentation-induced cracking methods for the first time. The mechanical modeling parameters are gathered from the microhardness (Vickers) experimental tests performed at various applied loads interval 0.245 N–2.940 N. The results provide that the key mechanical design features improve systematically with the augmentation of trivalent Bi/Ga partial replacement level up to x = 0.05 due to the rapid decrement in the main structural problems; namely, the grain orientations, lattice strains, distortions, dislocations, grain boundary interaction/coupling problems, crack-initiating and crack-producing omnipresent flaws in the advanced Bi-2212 ceramic system. Accordingly, the optimum Ga inclusions strengthens the mechanical durability towards the applied stress due to the increased stabilization in the durable tetragonal phase. After the critical substitution amount of x = 0.05, the mechanism turns reversely, and the general mechanical characteristic features including the stiffness, mechanical durability and strength degrade remarkably. Additionally, the mechanical modeling results demonstrate that the Bi/Ga impurity leads to vary positively the quality of standard indentation size effect (ISE) feature until x = 0.05, beyond which the excess Ga additives damage seriously ISE feature of Bi-2212 inorganic compounds. Besides, the indentation-induced cracking (IIC) model is noticed as the best method to describe the true microhardness parameters of Bi/Ga substituted Bi-2212 compounds for the mechanical characterization.Scopus Evaluation of microstructural and mechanical properties of ag-diffused bulk MgB2 superconductors(2014-01-01) Yilmazlar M.; Terzioglu C.; Dogruer M.; Karaboga F.; Soylu N.; Zalaoglu Y.; Yildirim G.; Ozturk O.Electrical, microstructural, and mechanical properties of undiffused and Ag-diffused bulk MgB2 superconductors are systematically studied using dc resistivity, scanning electron microscopy (SEM), and Vickers microhardness (H V ) measurements. The resistivity (at room temperature), critical (onset and offset) temperature, variation of transition temperature, hole-carrier concentration, surface morphology, Vickers microhardness, elastic modulus, and yield strength values of the samples are obtained and compared with each other. One can see that all superconducting parameters given above depend on the Ag diffusion on MgB2 system. The obtained results illustrate that the room temperature resistivity reduces with the increment of diffusion annealing temperature because of the hole filling when the onset (Tconset) and offset (Tcoffset) critical temperatures determined from the resistivity curves are obtained to enhance from 38.4 to 39.7 K and from 36.9 to 38.8 K, respectively. Further, SEM studies carried out for the microstructural characterization demonstrate that the surface morphology and grain connectivity also improve with the increase of the diffusion annealing temperature. In fact, the best surface morphology is observed for the Ag-diffused bulk MgB2 superconductor exposed to 850 C annealing temperature. Besides, it is obtained that the load-dependent microhardness values reduce nonlinearly as the applied load increases until 2 N, beyond which the curves shift to the saturation region, presenting that all the samples exhibit the indentation size effect (ISE) behavior. Further, the elastic modulus and yield strength values observed decrease with the enhancement of the applied load. © 2013 Springer Science+Business Media New York.Scopus Evaluation of superconducting features and gap coefficients for electron–phonon couplings properties of MgB2 with multi-walled carbon nanotube addition(2022-03-01) Kaya N.; Cavdar S.; Ozturk O.; Yildirim G.; Koralay H.In this study, the samples are prepared by solid state reaction method at different weight ratios (0–4%). The characterization of materials produced is conducted with the aid of powder X-ray diffraction (XRD), temperature-dependent electrical resistivities (ρ-T) and magnetization (M–H) measurements. Moreover, the change in the scattering/breaking of cooper-pairs in the small homogeneous clusters in the superconducting paths with the addition of multi-walled carbon nanotube is also examined by the energy gap coefficients. All the experimental findings show that the weight ratio of wt 2% is observed to be the optimum addition level. The XRD results indicate that the MgB2 material prepared by the optimum level crystallizes better in hexagonal symmetry. The critical current density is found to increase from 1.0 × 104 to 2.3 × 104A cm−2 depending on the increment in the magnetization values. On the other hand, the addition mechanism is noted to degrade slightly the general electrical features, critical transition temperatures, lattice cell constants and crystallite size of MgB2 material. Regardless, although the carbon nanotube addition seems to be negative effect on some general properties, the fundamental characteristic properties (the crystallinity with smoother crystallographic transition, magnetization values, coupling of adjacent layers, degree of broadening and especially formation of effective nucleation centers for the flux pinning ability) improve seriously at the optimum dopant level. Thus, the MgB2 prepared with the optimum carbon nanotube concentration can exhibit higher performance against the magnetic field and current in larger magnetic field strengths applied.Scopus Examination of pairing mechanism, orbital hybridization, stabilization and magnetization behavior of Tb/Y and Zn/Cu partially substituted Y-123 Superconductors(2022-11-30) Ozturk O.; Guducu G.; Safran S.; Yildirim G.The effect of homovalent Tb/Y and Zn/Cu substitution on electrical, superconducting, structural, and magnetic features of Y-123 ceramic materials is extensively examined by powder X-ray diffraction, electrical resistivity, scanning electron microscopy, energy dispersive X-ray spectrometry, DC magnetization VSM measurements and related calculations. Y1−xTbxBa2Cu3O7-ɤ and YBa2(Cu1−xZnx)3O7-ɤ samples are prepared with four different molar percentages (0.0 ≤x ≤ 0.15) using the sol-gel technique. DC magnetization data and the Bean model are used to evaluate change in critical current densities with an applied magnetic field. Energy-dispersive X-ray spectrometry measurements indicate that materials are exactly produced in the desired stoichiometric ratios. Moreover, all the experimental findings show that the fundamental characteristic properties are observed to decrease with replacement mechanism. The degradation mechanism with partial substitution is thoroughly explained scientifically in the basic contents for the first time. The role of Tb/Y and Zn/Cu partial substitution on the oxygen concentration level in unit cell, ordering degree in the Cu-O ribbons, lattice cell parameters, grain size, and the number of holes in the σ antibonding in-plane Cu-O bonds are also discussed in detail. Additionally, beginning of weak-interaction problems between adjacent superconductive layers, formation of microscopic structural faults and decoupling of superconducting grains are noted to be the negative effect of substitution mechanism. Regardless, it is observed that Tb-doped samples possessing more uniform surface morphologies with better surface texture and connection quality between particles show much higher magnetization behavior and superconducting properties. All in all, this study developing a scientific methodology about why fundamental characteristic features change with the partial replacements of Tb/Y and Zn/Cu in crystal systems seems a pioneering investigation to construct novel and feasible application fields for the Y-123 ceramic compounds.Scopus Experimental and theoretical approaches on mechanical evaluation of Y123 system by Lu addition(2013-07-01) Turkoz M.; Nezir S.; Ozturk O.; Asikuzun E.; Yildirim G.; Terzioglu C.; Varilci A.This work is the continuation of a systematic study on the characterization of the Lu-added Y123 bulk superconducting materials prepared by the nitrate compounds and derivatives at 970 C for 20 h. In this part, the effect of Lu inclusions on the physical and mechanical properties of the Y123 superconductors is examined with the aid of microhardness measurements performed at various applied loads in the range of 0.245-2.940 N. The microhardness measurement results allow us to determine the important mechanical characteristics such as Vickers microhardness, elastic (Young's) modulus, yield strength and fracture toughness values being responsible for the potential industrial applications. It is found that all the properties given above are strongly dependent upon the Lu concentration in the Y123 matrix. Especially, Vickers microhardness (H v ) values of the samples studied in this work are found to suppressed considerably with the enhancement of the Lu addition in the system due to the degradation in the connectivity between superconducting grains. Moreover, the Hv values of the pure Y123 sample are observed to increase with increasing the applied load whereas those of the Lu-doped superconducting materials are obtained to decrease with the load. In other words, the pure sample exhibits the reverse indentation size effect (RISE) behavior while the others obey the indentation size effect (ISE) feature, confirming the degradation in the mechanical properties with the Lu inclusions in the Y123 matrix. In addition, the microhardness measurement results are estimated using the 5 different models such as Meyer's law, proportional sample resistance model, elastic/plastic deformation model, Hays-Kendall (HK) approach and indentation-induced cracking (IIC) model. According to the results obtained from the simulations, of the mechanical analysis models, the Hays-Kendall (HK) approach is determined as the most successful model for the description of the mechanical properties of the Lu-doped superconducting materials (exhibiting the ISE behavior) where both the both the reversible (elastic) and irreversible (plastic) deformations are produced. On the other hand, the IIC model is found to be superior to other approaches for the pure sample (presenting the RISE feature) where the irreversible deformation becomes more and more dominant compared to the reversible deformation. © 2013 The Author(s).Scopus Improvement of the nature of indentation size effect of Bi-2212 superconducting matrix by doped Nd inclusion and theoretical modeling of new matrix(2014-01-01) Ozturk O.; Asikuzun E.; Kaya S.; Yildirim G.; Turkoz M.; Kilic A.Neodmium (Nd) inclusions at different stoichiometric ratios (x=0.0, 0.001 %, 0.005 %, 0.01 %, 0.05 %, 0.1 %) are doped in the Bi-2212 superconducting samples and the samples obtained are subjected to the sintering process at 840 °C constant temperature for 72 hours. The effect of Nd doping on the structural and mechanical properties of prepared samples is investigated by the standard characterization measurements. XRD and SEM measurements are performed to obtain information about surface morphology, phase ratios, lattice parameters and particle size. Moreover, Vickers microhardness (H V ) measurements are exerted to investigate the mechanical properties of the all samples in detail. It is found that all the properties given above retrogress with the increase of the Nd concentration in the Bi-2212 superconducting core. However, the ISE nature of the materials improves systematically. Additionally, the experimental results of microhardness measurements are analyzed using Meyer's law, PSR, MPSR, EPD models and HK approach. The results show that Hays-Kendall approach is determined as the most successful model. © 2014 Springer Science+Business Media New York.Scopus Influence of diffusion-annealing temperature on physical and mechanical properties of Cu-diffused bulk MgB2 superconductor(2013-02-01) Dogruer M.; Zalaoglu Y.; Gorur O.; Ozturk O.; Yildirim G.; Varilci A.; Yucel E.; Terzioglu C.This study reports not only the effect of Cu diffusion on physical and mechanical properties of bulk MgB2 superconductors with the aid of Vickers microhardness (Hv) measurements but also the diffusion coefficient and the activation energy of copper (Cu) in the MgB2 system using the resistivity measurements for the first time. Cu diffusion is examined over the different annealing temperature such as 650, 700, 750, 800 and 850 C via the successive removal of thin layers and resistivity measurement of the sample. Further, Vickers microhardness, elastic modulus, yield strength, fracture toughness and brittleness index values of the samples studied are evaluated from microhardness measurements. It is found that all the results obtained depend strongly on the diffusion annealing temperature and applied load. The microhardness values increase with ascending the annealing temperature up to 850 C owing to the increment in the strength of the bonds between grains but decreasing with the enhancement in the applied load due to Indentation Size Effect behaviour of the bulk samples. Moreover, the diffusion coefficient is observed to enhance from 2.84 × 10-8 to 3.22 × 10 -7 cm2 s-1 with the increase of the diffusion-annealing temperature, confirming that the Cu diffusion is more dominant at higher temperatures compared to lower ones. Besides, temperature dependence of the Cu diffusion coefficient is described by the Arrhenius relation D = 2.66 × 10-3 exp(-1.09 ± 0.05 eV/k BT) and the related activation energy of the Cu ions in the MgB 2 system is obtained to be about 1.09 eV. Based on the relatively low value of activation energy, the migration of the Cu ions primarily proceeds through defects such as pore surfaces and grain boundaries in the polycrystalline structure, resulting in the improvement of the physical and mechanical properties of the bulk MgB2 samples. © 2012 Springer Science+Business Media, LLC.Scopus Influence of Sr/Nd partial replacement on fundamental properties of Bi-2223 superconducting system(2021-03-01) Dogruer M.; Aksoy C.; Yildirim G.; Ozturk O.; Terzioglu C.This comprehensive work aims to examine the change in flux pinning mechanism, physical, mechanical, and structural characteristics of pure and Sr-site Nd-substituted Bi1.8Pb0.35Sr1.9−yNdyCa2.2Cu3Ox (Bi-2223) systems. The magnetoresistivity performances for all the samples are carried out by magnetotransport experiments in the existence of external magnetic field strength intervals 0–7 T. It is found that the increment of Nd/Sr substitution amount in bulk Bi-2223 system retrogrades the pinning capability of thermal flux motions for interlayer Josephson junction between the isolated grains. Similarly, the coupling probabilities of copper pairs and potential energy barriers are significantly diminished by increasing Nd impurity. This is in association with the enhancement of permanent structural problems in the crystal structure. Therefore, the excessive Nd inclusions improve the reattached linear/split pancake-like nature. In this regard, the best magnetic performance quantities are obtained for the pure sample. Besides, the SEM images show that the grain connectivity and surface morphology damage significantly with the Nd impurity. Additionally, the experimental microhardness findings conducted at various external loads (0.245–2.940 N) display that the Nd purity in the superconducting system degrades dramatically the key design mechanical features. Besides, we analyze the mechanical characteristic properties founded on the theoretical approaches with the proportional sample resistance, elastic/plastic deformation, and Hays–Kendall methods. The results obtained show that the Nd purity causes the indentation size effect behavior to decrease dramatically for all the samples. Furthermore, the findings of Hays–Kendall method are noticed to much more agree with the real hardness parameters. Thus, the Hays–Kendall model is the best methods to find the load-independent Vickers hardness values for the Sr-site Nd-substituted Bi1.8Pb0.35Sr1.9−yNdyCa2.2Cu3Ox (Bi-2223) systems. Moreover, in the dynamic microhardness measurements, the contact depth (hc), elastic modulus (Er), and load (Pmax) of all the samples are experimentally recorded for the first time. The results reveal that the mechanical properties depend strongly on the load and Nd impurity level.Scopus Investigation of indentation size effect (ISE) and micro-mechanical properties of Lu added Bi2Sr2CaCu2Oy ceramic superconductors(2013-01-01) Ozturk O.; Erdem M.; Asikuzun E.; Yildiz O.; Yildirim G.; Varilci A.; Terzioglu C.In this study, we investigated the effect of the Lutetium (Lu) addition on microstructure and mechanical properties of the Bi-2212 superconductors annealed at 840 C for 50 h. The samples were prepared by the widely used conventional solid-state reaction method. For comparison, undoped sample was prepared in the same conditions. The prepared samples were characterized using X-ray powder diffraction (XRD), scanning electron microscope (SEM), and microhardness measurements (H v ). The volume fraction and lattice parameters were determined from the XRD measurements. The microstructure, surface morphology and orientation of the grains were investigated by SEM. In this study we have focused on microhardness measurements to investigate the mechanical properties. Vickers microhardness, load independent hardness, Young's modulus, fracture toughness and yield strength values were calculated separately for doped and undoped samples. Experimental results of hardness measurements were analyzed using the Meyer's law, proportional sample resistance (PSR)model, modified proportional sample resistance (MPRS) model, Elastic-Plastic deformation model (EPD), and Hays-Kendall (HK) approach. Finally, the Hays-Kendall (HK) approach was determined as the most successful model describing the mechanical properties of our samples. Moreover, lattice parameter c and volume fraction of Bi-2212 phase decreased with increasing Lu content. SEM measurements show that not only the surface morphology and grain connectivity were obtained to degrade but also the grain sizes of the samples were found to decrease with the increase of the Lu addition, as well. © 2012 Springer Science+Business Media, LLC.Scopus Investigation of microstructural, Vickers microhardness and superconducting properties of YBa2Cu3-xGdxO 7-δ (0 ≤ x ≤ 0.150) superconducting ceramics via experimental and theoretical approaches(2013-04-01) Dogruer M.; Yildirim G.; Ozturk O.; Varilci A.; Soylu N.; Gorur O.; Terzioglu C.This study manifests the change of pinning mechanism, electrical, structural, physical, mechanical and superconducting properties of YBa 2Cu3-xGdxO7-δ superconductors samples prepared by the conventional solid-state reaction method (x = 0, 0.025, 0.050, 0.100 and 0.150) by use of dc resistivity, X-ray analysis (XRD), scanning electron microscopy (SEM) and Vickers microhardness measurements. Zero resistivity transition temperatures (T coffset ) of the samples are deduced from the dc resistivity measurements. Additionally, the lattice parameters are determined from XRD measurements when the microstructure, surface morphology and microhardness of the samples studied are examined by SEM and mechanical measurements, respectively. The results obtained demonstrate that T coffset values of the samples decrease slowly with the increase in the Gd content. The maximum T coffset (92.0 K) is obtained for the pure sample prepared at 940 C for 20 h in air atmosphere while the minimum value of 83.3 K is found for the sample doped with 0.150 Gd content. Moreover, it is obtained that J c values reduce from 132 to 34 A/cm2 with the enhancement of the Gd level in the crystalline structure. Further, the peak intensities belonging to Y123 (major) phase are obtained to decrease whereas the peak intensities of the minor phases such as BaCuO2 and Y211 are found to enhance systematically with the increment in the Gd content in the system, illustrating that partial substitution of Cu2+ ions by Gd3+ ions are carried out successfully. Moreover, SEM images display that the undoped sample obtains the best crystallinity and connectivity between superconducting grains and largest grain size whereas the worst surface morphology is observed for the maximum doped sample (x = 0.150). At the same time, Vickers microhardness, elastic modulus, load independent hardness, yield strength, fracture toughness and brittleness index values, playing important roles on the mechanical properties, are computed for all the samples. The experimental results of the microhardness measurements are examined using the Meyer's law, PSR (proportional specimen resistance), modified PRS, Elastic-Plastic deformation model (EPD) and Hays-Kendall (HK) approach. The microhardness values obtained increase with the enhancement of the Gd content in the samples. Besides, it is noted that the Hays-Kendall approach is the most successful model explaining the mechanical properties of the samples studied in this work. © 2012 Springer Science+Business Media New York.