Browsing by Author "Uzun O."
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
Scopus Effect of Co on Si and Fe-containing intermetallic compounds (IMCs) in Al-20Si-5Fe alloys(2012-10-30) Fatih Kilicaslan M.; Yilmaz F.; Hong S.; Uzun O.The effects of cobalt addition on microstructure and mechanical properties of Al-20Si-5Fe-XCo (X=0, 1, 3, and 5) alloys were reported in this study. The alloys were produced by both conventional sand casting and melt-spinning at 20. m/s disk velocity. Microstructures of the samples were investigated using X-ray diffractometry (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Vickers micro-hardness tester was used for hardness measurements. Results showed that Co addition can alter morphology of Fe-bearing intermetallic compounds (IMCs) from long rod/needle-like structures to short rod-like ones, and lead to a more homogenous distribution in the microstructure. Addition of 5. wt% Co leads to a decrease in average size of the primary silicon phases in as-cast Al-Si alloys. In melt-spun alloys, with the addition of Co, the microstructure became finer and more homogenously distributed, while thickness of the featureless zone has seen great increase. The optimum Fe to Co ratio was found to be 1 for suppressing the undesirable effect of Fe-bearing acicular/needle-like intermetallic compounds. © 2012 Elsevier B.V.Scopus Effect of Different Production Methods on the Mechanical and Microstructural Properties of Hypereutectic Al-Si Alloys(2014-10-01) Fatih Kilicaslan M.; Uzun O.; Yilmaz F.; Çağlar S.In this study, the effects of different production methods like melt spinning, high-energy ball milling, and combined melt spinning and high-energy ball milling on the mechanical and microstructural properties of hypereutectic Al-20Si-5Fe alloys were investigated. While microstructural and spectroscopic analyses were performed using scanning electron microscopy and X-ray diffractometry, mechanical properties were measured using a depth-sensing indentation instrument with a Berkovich tip. Microstructural and spectroscopic analyses demonstrate that high-energy ball milling process applied on the melt-spun Al-20-Si-5Fe alloy for 10 minutes brings about a reduction in the size of silicon particles and intermetallic compounds. However, further increase in milling time does not yield any significant reduction in size. High-energy ball milling for 10 minutes on the starting powders is not enough to form any intermetallic phase. According to the depth-sensing indentation experiments, high-energy milling of melt-spun Al-20Si-5Fe alloys shows an incremental behavior in terms of hardness values. For the Al-20Si-5Fe alloys investigated in this study, the production technique remarkably influences their elastic–plastic response to the indentation process in terms of both magnitude and shape of P-h curves.Scopus Effects of Substitution of Al and Bi for Ni on Structure and Hydrogen Storage Properties of LaNi 4.7-xAl 0.3Bi x (x = 0:1; 0:2; 0:3) Alloy(2012-09-01) Yilmaz F.; Kilicaslan M.; Atanur O.; Hong S.; Uzun O.In this research, the effects of Al and Bi substitution for Ni on the microstructure and hydrogen absorption/desorption properties of LaNi 4.7-xAl 0.3Bi x (x = 0:1; 0:2; 0:3) alloys were investigated. The results showed that substituting Ni with Al led to a desirable decrease in absorption/desorption plateau pressure as well as to hysteresis without a reduction in hydrogen capacity. However, Bi substitution reduced the hydrogen capacity and increased the absorption/desorption plateau pressure of the samples. The formation of the (Al,Ni) intermetallic and Bi phases at grain boundaries was found to be the main reason for the changes in hydrogen storage properties. © 2012 The Japan Society of Applied Physics.Scopus Formation of novel flower-like silicon phases and evaluation of mechanical properties of hypereutectic melt-spun Al-20Si-5Fe alloys with addition of V(2014-06-23) Uzun O.; Kilicaslan M.; Yilmaz F.In this work, rapidly solidified hypereutectic Al-20Si-5Fe-. XV (X=0, 0.5 and 1) alloys were fabricated by melt spinning under vacuum. Microstructural and spectroscopic analyses were performed using SEM, TEM, TEM-MAPing, TEM-EDS and XRD measurements. Mechanical properties of the alloys were determined using DSI measurements. Experimental results indicated that addition of 0.5. wt% V to melt-spun Al-20Si-5Fe alloys induced formation of a novel flower-like Si phase. And addition of higher amount V (1. wt%), caused formation of refined Si phases and mostly hindered formation of Fe-bearing intermetallics. Observations along with manuscript strongly indicate that V modifies the Si phases by the impurity induced twinning (IIT). Changes in the dynamic microhardness of the samples were mainly determined by the size of Si phases. Addition of vanadium led to quite lower elastic modulus in the vanadium added alloys compared to base alloy. © 2014 Elsevier B.V.Scopus Microstructure and microhardness of melt-spun Al-25Si-5Fe-XCo (X = 0, 1, 3, 5) alloys(2013-02-01) Kiliçaslan M.; Yilmaz F.; Ergen S.; Hong S.; Uzun O.The microstructure and microhardness evolution of melt-spun Al-25Si-5Fe alloy with Co addition (1, 3 and 5 wt.%) were investigated. Microstructural and spectroscopic analyses demonstrate that Co could refine primary Si grains and change their morphology because it causes higher constitutional undercooling and has large mixing enthalpy with Si. Especially, 3 wt.% Co addition causes homogeneously distributed fine spherical Si particles in the rapidly solidified Al-25Si-5Fe alloy. The size of the spherical silicon particles was from around 200 to 600 nm near the wheel side region, and it varied from 800 nm to 1.3 μm at the air side. The optimum ratio of Si and Co should be between 6 and 8.3 to form spherical Si grains in Al-25/30Si-5Fe alloys. A considerable improvement in microhardness value (from 211 to 370 HV) was obtained with the addition of Co. © 2013 Elsevier Inc.Scopus Nanoindentation study on Gd-deposited YBaCuO superconductor(2013-01-01) Yilmaz F.; Uzun O.; Kolemen U.; Kilicaslan M.; Basman N.; Ergen S.; Ozturk K.; Yanmaz E.Nanoindentation technique was used to characterize the mechanical properties of Gd-deposited bulk YBaCuO superconductors fabricated by solid-state reaction method. In order to determine the hardness and reduced modulus of the samples, load-displacement data were analysed by using the Oliver-Pharr method. The hardness values exhibited significant peak load-dependence especially at lower peak loads, while the reduced modulus values were found to be nearly constant at studied loading range. In order to find true hardness of the samples, the peak load-dependency of hardness was analysed by using Meyer's law,minimum resistance model, elastic/plastic deformation model, energy balance model, Nix-Gao model and Mukhopadhyay approach. Of the aforementioned models, energy balance model and Mukhopadhyay approach were found to be the most effective models to explain the load-dependency of hardness. © Indian Academy of Sciences.Scopus Shape memory properties and microstructural evolution of rapidly solidified CuAlBe alloys(2013-05-03) Ergen S.; Uzun O.; Yilmaz F.; Kiliçaslan M.In this work, the effects of Be addition on the microstructure and phase transformation temperatures of Cu-12Al-xBe (x = 0.4, 0.5 and 0.6 wt.%) shape memory alloys fabricated by using the arc-melting and melt-spinning techniques have been investigated. X-ray diffraction analysis revealed that the arc-melted alloys consisted of austenitic β1, martensitic β1′ and γ2 precipitate phases, whereas melt-spun ribbons were composed of a fully martensitic phase. The average grain size of martensitic phases in melt-spun ribbons was determined by electron microscopy images, showing a decrease with increasing Beryllium (Be) amount. Moreover, it was found that the Be addition in the arc-melted alloys had a distinct effect on the morphology of the γ2 precipitate phase. Transmission electron microscopy analysis showed that the thickness of martensitic plates in the melt-spun ribbons reduced with increasing Be addition. In a differential scanning calorimeter analysis, no martensitic transformation (Ms) peak was observed in arc-melted alloys, but it was clearly detected in melt-spun ribbons, in which Ms decreased dramatically with increasing Be addition. The improvement in the shape memory ability of melt-spun ribbons was explained in terms of the refinement in grain size and martensitic plates. © 2013 Elsevier Inc.Scopus Structural and mechanical properties of hypereutectic AlSiFe powders and a new method for determination of sintering temperature(2018-03-01) Ergen S.; Yılmaz F.; Gul S.; Kolemen U.; Kilicaslan M.; Uzun O.In this study, the effect of Si amount on the microstructure, crystal structure and some mechanical properties of Al-(20,25,30 wt%)Si–5Fe powder mixtures produced by high energy ball milling method was investigated by determining the sintering temperature. In the X-ray diffraction analysis, no inter-metallic phases were found except for the Al, Si and Fe phases of the powder mixtures. The X-ray diffraction patterns were analyzed by the Rietveld method to determine amounts of the Al, Si and Fe elements in the powder mixtures. From the scanning electron microscopy analysis, it is seen that as the amount of Si increases, there is a marked decrease in the grain size of powders. In the micro-indentation tests performed at room temperature, the hardness and elastic modulus values of the pelletized powders were found to increase with the amount of Si. It was also found that the Al-20Si-5Fe powder mixture with the lowest Si content had the highest damping capability. The high temperature micro-indentation tests showed that the resulting Al-(20,25,30 wt%) Si-5 Fe powder mixtures started to consolidation at 200 °C and completed the consolidation at 400 °C. This method can be used as an alternative method in the determination of the sintering temperature of materials.