Browsing by Author "Terzioglu C."
Now showing 1 - 20 of 34
- Results Per Page
- Sort Options
Scopus A comprehensive study on mechanical properties of Bi1.8Pb 0.4Sr2MnxCa2.2Cu3.0O y superconductors(2013-08-01) Dogruer M.; Karaboga F.; Yildirim G.; Terzioglu C.; Ozturk O.This study manifests the crucial change in the mechanical performances of Bi1.8Pb0.4Sr2MnxCa 2.2Cu3.0Oy superconductor samples (x = 0, 0.03, 0.06, 0.15, 0.3 and 0.6) prepared by conventional solid-state reaction method by use of Vickers microhardness (Hv) measurements carried out at different applied loads, (0.245 N ≤ F ≤ 2.940 N). Load dependent microhardness, load independent microhardness, Young's (elastic) modulus and yield strength values being account for the potential technological and industrial applications are evaluated from the hardness curves and compared with each other. It is found that the Hv, elastic modulus and yield strength obtained decrease (increase) with the enhancement of the applied load for the undoped (doped) samples. Surprisingly, the results of the Hv values illustrate that the samples doped with x = 0.03, 0.06, 0.15, 0.3 and 0.6 exhibit reverse indentation size effect (RISE) feature whereas the pure sample obeys indentation size effect (ISE) behavior. Furthermore, the experimental results are examined with the aid of the available methods such as Meyer's law, proportional sample resistance model (PSR), elastic/plastic deformation (EPD), Hays-Kendall (HK) approach and indentation-induced cracking (IIC) model. The results inferred show that the hardness values calculated by PSR and EPD models are far from the values of the plateau region, meaning that these models are not adequate approaches to determine the real microhardness value of the Mn doped Bi-2223 materials. On the other hand, the HK approach is completely successful for the explanation of the ISE nature for the pure sample while the IIC model is obtained to be the best model to describe the hardness values of the doped materials exhibiting the RISE behavior. Additionally, the bulk porosity analysis for the samples reveals that the porosity increases monotonously with the increment in the Mn inclusions inserted in the Bi-2223 system, presenting the degradation of the grain connectivity. © 2013 Springer Science+Business Media New York.Scopus A study on magnetoresistivity, activation energy, irreversibility and upper critical field of slightly Mn added Bi-2223 superconductor ceramics(2012-05-01) Dogruer M.; Zalaoglu Y.; Varilci A.; Terzioglu C.; Yildirim G.; Ozturk O.This study discusses the effect of Mn addition on the superconducting and physical properties in Bi 1.8Pb 0.4Sr 2Mn xCa 2.2Cu 3.0O y bulk superconductors with x = 0, 0.03,0.06,0.15, 0.3, and 0.6 by means of themagne-toresistivity measurements. The magnetoresistivity of the samples prepared using the standard solid-state reaction method was measured for different values of the applied magnetic field strengths. The superconducting and physical properties of the samples such as the zero resistivity transition temperatures (T c), irreversibility fields (μ 0Hi rr), and upper critical fields (μ 0H c2) were deduced from the magnetoresistivity curves. Moreover, thermally activated flux creep model was studied for activation energy (U0) values of the samples. According to the results of the measurements, not only were the T c and U0 values of the samples found to decrease significantly but the μ 0Hi rr and μ 0H c2 values were also observed to reduce with the increase in the Mn addition, indicating that the doping degrades the physical and superconducting properties of the samples. © 2012 Springer Science+Business Media, LLC.Scopus Ac Susceptibility Measurements and Mechanical Performance of Bulk MgB2(2015-07-24) Ozturk O.; Asikuzun E.; Kaya S.; Erdem M.; Safran S.; Kilic A.; Terzioglu C.The effects of Ar ambient pressure (vacuum and 0, 10, and 20 B) and annealing times (0.5 and 1 h) on microstructural, superconducting, and mechanical properties of bulk superconducting MgB2 are investigated. The samples are produced using the solid-state reaction method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) measurements are performed for determination of the crystal structure and surface morphology of MgB2 samples, respectively. The superconducting properties are studied by AC magnetic susceptibility measurements. Microhardness analyses are made using the Vickers microhardness test for determination of mechanical properties of all samples. Increasing the Ar pressure decreases the lattice parameters and hence the average grain size. Increasing the annealing time results in larger lattice parameters and larger grain formation. The susceptibility measurements revealed a two-step transition which is reminiscent of granular superconductors. The intra-grain transition temperature is determined to be 38.4 K for all samples. The inter-grain transition temperature of 37.2 K is obtained for samples produced under Ar ambient pressure. The samples produced under Ar ambient pressure have better superconducting properties than the ones produced in vacuum. Increasing the annealing time under vacuum further decreases the superconducting properties probably due to Mg loss.Scopus Analysis of indentation size effect (ISE) behavior in low-load Vickers microhardness testing of (Sm123) 1-x (Nd123) x superconductor system(2013-01-01) Celik S.; Ozturk O.; Coşkun E.; Sarıhan M.; Asikuzun E.; Ozturk K.; Terzioglu C.Indentation size effect (ISE) for (Sm123) 1-x (Nd123) x superconducting samples which were fabricated by the solid state reaction technique for values of x = 0.00, 0.05, 0.10, 0.20, and 0.30 was investigated by analyzing the theoretical models. When the experimental data of a number of single crystals which have the different crystal structure and different chemical bonding inside the polycrystallined samples were analyzed with the ISE models, the sample encountering with resistance and elastic deformation was observed as well as plastic deformation. The microhardness values on different surfaces of materials were calculated by using Meyer Law, proportional specimen resistance model, modified proportional specimen resistance model, elastic/plastic deformation model and the Hays-Kendall (HK) approach. The results showed that the HK approach was determined as the most successful model. Furthermore, X-ray powder diffraction and scanning electron microscope measurements were analyzed for superconducting properties of (Sm123) 1-x (Nd123) x superconductor system. The results showed that microhardness values at the minimum load and averaged plateau region of load increased with increase of Nd123 concentration. Nd123 content can be used as to be estimated the microhardness value of (Sm123) 1-x (Nd123) x superconducting sample in the range of 0.878-2.717 GPa. The control of the microhardness value by using Nd123 content in (Sm123) 1-x (Nd123) x superconducting structure can be useful in technological applications in superconductivity industry. © 2013 Springer Science+Business Media New York.Scopus Analysis of indentation size effect on mechanical properties of Cu-diffused bulk MgB2 superconductor using experimental and different theoretical models(2013-01-01) Dogruer M.; Yildirim G.; Ozturk O.; Terzioglu C.This study indicates the change of the electrical, microstructural, physical, mechanical and superconducting properties of Cu-diffused bulk MgB 2 superconductors by means of scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), microhardness and dc resistivity measurements. The samples are prepared at different annealing temperatures in the range from 650 to 850 â̂̃C. Electrical and superconducting properties of samples are estimated from the dc electrical resistivity measurements. Moreover, microhardness measurements are performed to investigate the mechanical properties. Further, phase composition, grain sizes and lattice parameters are determined from the XRD measurements. At the same time, the surface morphology and grain connectivity of the samples are examined by SEM investigations. The measurements conducted demonstrate that both the Cu diffusion into the MgB2 system and the increment in the diffusion-annealing temperature increase the critical transition temperatures. Similarly, microstructure and grain size improve while the voids and porosity decrease with the increase of the diffusion-annealing temperature. In addition, the experimental results of the microhardness measurements are investigated using the Meyer's law, PSR (proportional specimen resistance), modified PRS (MPSR), elastic-plastic deformation model (EPD) and Hays-Kendall (HK) approach. The obtained microhardness values of the samples decrease with the increase of the diffusion-annealing temperature up to 850 â̂̃C. The Hays-Kendall approach is found to be the most successful model describing the mechanical properties of the samples studied in this work. © 2012 Springer Science+Business Media, LLC.Scopus Breaking point of the harmony between Gd diffused Bi-2223 slabs with diffusion annealing temperature(2013-01-01) Aydın H.; Babanli A.; Altintas S.; Asikuzun E.; Soylu N.; Ozturk O.; Dogruer M.; Terzioglu C.; Yildirim G.This comprehensive study reports the role of annealing temperature on the microstructural, superconducting and mechanical characteristics of the Gd diffused Bi-2223 superconducting ceramics produced by the conventional solid-state reaction route at 840 C for the annealing duration of 48 h. For the material characterization, the standard experimental methods such as dc resistivity (ρ-T), transport critical current density, X-ray powder diffraction, scanning electron microscopy and Vickers microhardness measurements are performed systematically. All the results obtained show that all the measured characteristic properties, being in charge of the applications in the industry, engineering and technology, improve until a certain diffusion annealing temperature of 800 C beyond which they tend to degrade considerably. The increase in the properties is mostly related to the transition from the inherent overdoped state of the pure Bi-2223 material to optimum doped state with the diffusion annealing temperature, confirming the penetration of the sufficient Gd nanoparticles into the crystal structure. On the other hand, the suppression in the superconducting properties stems from the appearance of the porosity, defects, disorder and localization problem in the polycrystalline Bi-2223 superconducting matrix. This is attributed to the decrement of the average crystallite size and mobile hole concentration in the Cu-O 2 layers and especially the retrogression of the crystallinity in the system. As for the mechanical characteristics, Vickers microhardness measurements exerted in the applied indentation test load range of 0.245-2.940 N indicate that the Gd diffused bulk superconducting samples exhibit the typical indentation size effect behavior. With the enhancement in the annealing temperature up to 800 C, the significant increase in the elastic modulus, yield strength and fracture toughness is one of the most striking points in the paper. The long and short of it is that the excess diffusion annealing temperature damages the fundamental characteristics of the Bi-2223 system. © 2013 Springer Science+Business Media New York.Scopus Comparative study on mechanical properties of undoped and Ce-doped Bi-2212 superconductors(2013-07-01) Zalaoglu Y.; Bekiroglu E.; Dogruer M.; Yildirim G.; Ozturk O.; Terzioglu C.This study discusses the mechanical performances of Bi1.8Sr 2.0CexCa1.1Cu2.1Oy ceramics with x = 0, 0.001, 0.003, 0.005, 0.01, 0.03, 0.05 and 0.1 by way of Vickers microhardness (Hv) measurements performed at different applied loads in the range of 0.245-2.940 N. For the potential industrial applications, the important mechanical characteristics such as Vickers microhardness, elastic modulus, yield strength, fracture toughness and brittleness index values of the samples studied are extracted from the microhardness measurements. All the results obtained indicate that the Vickers hardness, Young's (elastic) modulus, yield strength, fracture toughness and brittleness index values suppress with the increment of the Ce concentration in the system as a consequence of the degradation in the connectivity between superconducting grains. The decrement in the Hv values with the applied load is attributed Indentation Size Effect behaviour of the samples studied. Moreover, the experimental results of Vickers microhardness measurements are estimated using the 5 different models such as Kick's law, proportional sample resistance model, modified proportional sample resistance model, elastic/plastic deformation model and Hays-Kendall approach. According to the results obtained from the simulations, Kick's law is not useful model to obtain information about the origin of the indentation size effect feature of the Ce-doped bulk Bi-2212 superconductors. On the other hand, the Hays-Kendall approach is determined as the most suitable model for the description of the mechanical properties of the superconducting samples. In addition, the bulk porosity analysis for the samples reveals that the porosity increases monotonously with the Ce inclusion in the Bi-2212, leading to the degradation of the grain connectivity. © 2013 Springer Science+Business Media New York.Scopus Effect of Ce addition on the magnetoresistivity, irreversibility field, upper critical field and activation energies of Bi-2212 superconducting ceramics(2012-05-01) Yildirim G.; Dogruer M.; Ozturk O.; Varilci A.; Terzioglu C.; Zalaoglu Y.This study aims to analyze the effect of Ce addition on the microstructural, superconducting and physical properties of Bi 1.8Sr 2.0CexCa 1.1Cu 2.1O y ceramics with x = 0, 0.001, 0.003, 0.005, 0.01, 0.03, 0.05 and 0.1 via X-Ray analysis (XRD), scanning electron microscopy (SEM), electron dispersive X-Ray (EDX) and magnetoresistivity measurements. The ceramics produced in this work are prepared using the standard solid-state reaction method. The zero resistivity transition temperatures (T c), activation energies (U0), irreversibility fields (μ 0Hi rr) and upper critical fields (μ 0H c2) are determined from the resistivity versus temperature (R-T) curves under dc magnetic fields up to 7 T The results show that T c and U0 values of the samples are found to decrease dramatically with the increase in the Ce-content and applied magnetic field. Moreover, XRD results indicate that all the samples contain the Bi-2212 phase only and exhibit the polycrystalline superconducting phase with less intensity of diffraction lines with the increase of the Ce addition. As for the results of SEM images, the texturing, crystallinity, grain size distribution, layered grain growth and grain connectivity are observed to degrade with the increase of the Ce doping. Besides, the irreversibility fields and upper critical fields are found to degrade as Ce doping increases. Penetration depths (λ) and coherence lengths (ξ) are also discussed. © 2012 Springer Science+Business Media, LLC.Scopus Effect of doping on microstructure and optical properties of ternary structure of Zn1−x−yBxCyO (B=Cu, C=Co) nano thin films(2020-12-01) Asikuzun E.; Ozturk O.; Terzioglu R.; Arda L.; Terzioglu C.We report the results of an in depth study of optical and microstuctural properties of thin films of Zn1−x−yCuxCoyO system (x = 0,00 and 0.02, y = 0.00, 0.01, 0.02, 0.03, 0.04. and 0.05) which are grown by the sol–gel method. We have performed differential thermal analysis, and thermo gravimetric analysis/difference thermogravimetric analysis, x-ray diffraction, scanning electron microscopy, energy dispersive spectrometer, atomic force microscopy and UV–VIS spectrophotometer experiments. We have found that all of the studied samples are in hexagonal wurtzite structure and oriented along the (002) direction with a very weak signal for the (101) reflection. We have also found that the lattice parameter c increases with doping. All the films showed wrinkle network structure with nano-sized crystals and the grain size was observed to decrease with increasing Co doping. The bandgap was found to decrease from 3.28 to 3.22 eV with doping. All the above results will be discussed in detail.Scopus Enhancing magnetoresistive features of iron-substituted La0·8Sr0·2MnO3 ceramic manganites(2022-10-15) Karadavut S.; Denbri F.; Terzioglu C.; Ozturk O.; Altintas S.P.The influence of iron content on the structural, microstructural, magnetic, and electrical-transport features of the ceramic perovskite manganites of the form La0·8Sr0·2Mn1-xFexO3 (x=0.0, 0.05, 0.1, and 0.2) was investigated. A single phase of rhombohedral-distorted structure with an R 3‾ c space group was confirmed for all synthesized ceramic samples. The microstructures of the manganite ceramics were improved by iron substitution. The magnetic and electrical-transport studies show that samples with x=0.0, 0.05, and 0.1 display phase transitions from ferromagnetic to paramagnetic state and metallic to insulating one with increasing temperature. The phase transition temperatures, i.e., Curie temperature, TC, and the resistance transition temperature TMI, are found to be lowered with the increase in the Fe concentration. The temperature coefficient of resistance (TCR) value for the x=0.0 sample is obtained ∼2.16% K−1 and slightly decreased to ∼1.55% K−1 with a 5% Fe substituted sample. As x rise to 0.1, we obtain the maximum TCR value of ∼8.23% K−1. At the same time, the maximum magnetoresistance is obtained as 48.1% at 233 K for the x=0.1 sample. One of the most important findings in this paper is that Fe substitution is very useful for improving magneto-electrical features of the La0·8Sr0·2MnO3 ceramics. Moreover, to better understand the temperature dependence of the electrical resistivity data, the experimental findings were fitted to the equations of several models.Scopus Evaluation of microstructural and mechanical properties of ag-diffused bulk MgB2 superconductors(2014-01-01) Yilmazlar M.; Terzioglu C.; Dogruer M.; Karaboga F.; Soylu N.; Zalaoglu Y.; Yildirim G.; Ozturk O.Electrical, microstructural, and mechanical properties of undiffused and Ag-diffused bulk MgB2 superconductors are systematically studied using dc resistivity, scanning electron microscopy (SEM), and Vickers microhardness (H V ) measurements. The resistivity (at room temperature), critical (onset and offset) temperature, variation of transition temperature, hole-carrier concentration, surface morphology, Vickers microhardness, elastic modulus, and yield strength values of the samples are obtained and compared with each other. One can see that all superconducting parameters given above depend on the Ag diffusion on MgB2 system. The obtained results illustrate that the room temperature resistivity reduces with the increment of diffusion annealing temperature because of the hole filling when the onset (Tconset) and offset (Tcoffset) critical temperatures determined from the resistivity curves are obtained to enhance from 38.4 to 39.7 K and from 36.9 to 38.8 K, respectively. Further, SEM studies carried out for the microstructural characterization demonstrate that the surface morphology and grain connectivity also improve with the increase of the diffusion annealing temperature. In fact, the best surface morphology is observed for the Ag-diffused bulk MgB2 superconductor exposed to 850 C annealing temperature. Besides, it is obtained that the load-dependent microhardness values reduce nonlinearly as the applied load increases until 2 N, beyond which the curves shift to the saturation region, presenting that all the samples exhibit the indentation size effect (ISE) behavior. Further, the elastic modulus and yield strength values observed decrease with the enhancement of the applied load. © 2013 Springer Science+Business Media New York.Scopus Experimental and theoretical approaches on mechanical evaluation of Y123 system by Lu addition(2013-07-01) Turkoz M.; Nezir S.; Ozturk O.; Asikuzun E.; Yildirim G.; Terzioglu C.; Varilci A.This work is the continuation of a systematic study on the characterization of the Lu-added Y123 bulk superconducting materials prepared by the nitrate compounds and derivatives at 970 C for 20 h. In this part, the effect of Lu inclusions on the physical and mechanical properties of the Y123 superconductors is examined with the aid of microhardness measurements performed at various applied loads in the range of 0.245-2.940 N. The microhardness measurement results allow us to determine the important mechanical characteristics such as Vickers microhardness, elastic (Young's) modulus, yield strength and fracture toughness values being responsible for the potential industrial applications. It is found that all the properties given above are strongly dependent upon the Lu concentration in the Y123 matrix. Especially, Vickers microhardness (H v ) values of the samples studied in this work are found to suppressed considerably with the enhancement of the Lu addition in the system due to the degradation in the connectivity between superconducting grains. Moreover, the Hv values of the pure Y123 sample are observed to increase with increasing the applied load whereas those of the Lu-doped superconducting materials are obtained to decrease with the load. In other words, the pure sample exhibits the reverse indentation size effect (RISE) behavior while the others obey the indentation size effect (ISE) feature, confirming the degradation in the mechanical properties with the Lu inclusions in the Y123 matrix. In addition, the microhardness measurement results are estimated using the 5 different models such as Meyer's law, proportional sample resistance model, elastic/plastic deformation model, Hays-Kendall (HK) approach and indentation-induced cracking (IIC) model. According to the results obtained from the simulations, of the mechanical analysis models, the Hays-Kendall (HK) approach is determined as the most successful model for the description of the mechanical properties of the Lu-doped superconducting materials (exhibiting the ISE behavior) where both the both the reversible (elastic) and irreversible (plastic) deformations are produced. On the other hand, the IIC model is found to be superior to other approaches for the pure sample (presenting the RISE feature) where the irreversible deformation becomes more and more dominant compared to the reversible deformation. © 2013 The Author(s).Scopus High-quality c-axis oriented non-vacuum Er doped ZnO thin films(2016-05-15) Asikuzun E.; Ozturk O.; Arda L.; Tasci A.; Kartal F.; Terzioglu C.Preparation, growth, structure and optical properties of high-quality c-axis oriented non-vacuum Er doped ZnO thin films were studied. Zn1-xErxO (x=0.0, 0.01, 0.02, 0.04, and 0.05) precursor solutions were prepared by sol-gel synthesis using Zn, and Er based alkoxide which were dissolved into solvent and chelating agent. Zn1-xErxO thin films with different Er doping concentration were grown on glass substrate using sol-gel dip coating. Thin films were annealed at 600 °C for 30 min, and tried to observe the effect of doping ratio on structural and optical properties. The particle size, crystal structure, surface morphologies and microstructure of all samples were characterized by X-Ray diffraction (XRD) and Scanning Electron Microscope (SEM). The UV-vis spectrometer measurements were carried out for the optical characterizations. The surface morphology of the Zn1-xErxO films depend on substrate nature and sol-gel parameters such as withdrawal speed, drying, heat treatment, deep number (film thickness) and annealing condition. Surface morphologies of Er doped ZnO thin films were dense, without porosity, uniform, crack and pinhole free. XRD results showed that, all Er doped ZnO thin films have a hexagonal structure and (002) orientation. The optical transmittance of rare earth element (Er) doped ZnO thin films were increased. The Er doped ZnO thin films showed high transparency (>85) in the visible region (400-700 nm).Scopus Influence of diffusion-annealing temperature on physical and mechanical properties of Cu-diffused bulk MgB2 superconductor(2013-02-01) Dogruer M.; Zalaoglu Y.; Gorur O.; Ozturk O.; Yildirim G.; Varilci A.; Yucel E.; Terzioglu C.This study reports not only the effect of Cu diffusion on physical and mechanical properties of bulk MgB2 superconductors with the aid of Vickers microhardness (Hv) measurements but also the diffusion coefficient and the activation energy of copper (Cu) in the MgB2 system using the resistivity measurements for the first time. Cu diffusion is examined over the different annealing temperature such as 650, 700, 750, 800 and 850 C via the successive removal of thin layers and resistivity measurement of the sample. Further, Vickers microhardness, elastic modulus, yield strength, fracture toughness and brittleness index values of the samples studied are evaluated from microhardness measurements. It is found that all the results obtained depend strongly on the diffusion annealing temperature and applied load. The microhardness values increase with ascending the annealing temperature up to 850 C owing to the increment in the strength of the bonds between grains but decreasing with the enhancement in the applied load due to Indentation Size Effect behaviour of the bulk samples. Moreover, the diffusion coefficient is observed to enhance from 2.84 × 10-8 to 3.22 × 10 -7 cm2 s-1 with the increase of the diffusion-annealing temperature, confirming that the Cu diffusion is more dominant at higher temperatures compared to lower ones. Besides, temperature dependence of the Cu diffusion coefficient is described by the Arrhenius relation D = 2.66 × 10-3 exp(-1.09 ± 0.05 eV/k BT) and the related activation energy of the Cu ions in the MgB 2 system is obtained to be about 1.09 eV. Based on the relatively low value of activation energy, the migration of the Cu ions primarily proceeds through defects such as pore surfaces and grain boundaries in the polycrystalline structure, resulting in the improvement of the physical and mechanical properties of the bulk MgB2 samples. © 2012 Springer Science+Business Media, LLC.Scopus Influence of gold diffusion-doped on phase formation, superconducting and microstructure properties of Bi1.8Pb0.35Sr 1.9Ca2.1Cu3Oy superconductors(2009-01-01) Ozturk O.; Akdogan M.; Terzioglu C.; Gencer A.We report on low-field magnetic properties of gold diffusion-doped Bi 1.8Pb0.35Sr1.9Ca2.1Cu 3Oy superconducting bulk samples by performing ac susceptibility measurements. The undoped samples were prepared by the standard solid-state reaction method. Doping of Bi1.8Pb0.35Sr 1.9Ca2.1Cu3Oy was carried out by means of Au-diffusion during sintering from an evaporated gold film on pellets. To investigate the effect of gold-diffusion and diffusion-annealing duration on transport, magnetic and microstructure properties of the superconducting samples we performed magnetoresistivity, scanning electron microscopy (SEM) and X-ray diffraction (XRD) measurements. The ac susceptibility as a function of temperature measurements were carried out at different values of the ac magnetic field amplitudes (Hac) in the range between 20A/m and 320 A/m for 211 Hz. The imaginary part of ac susceptibility measurements is used to calculate intergranular critical current density Jc(Tp) using the Bean Model. Jc(Tp) is seen to increase from 60 A cm -2 to 90 A cm-2 with increasing diffusion-annealing time from 10 h to 50 h. The peak temperature, Tp, in the imaginary part of the ac susceptibility is shifted to a lower temperature with decreasing diffusion-annealing duration as well as increasing ac magnetic fields. The force pinning density (αjj (0)) increased with increasing diffusion annealing time. The value of Tc in gold-diffused samples, in comparison with the undoped samples, increased from 100 0.2 K to 104 0.2 K. It was observed that the value of Tc-offset of the gold-doped samples enhanced with further increasing diffusion-annealing duration. XRD patterns and SEM micrographs are used to obtain information about Bi-2223 phase ratio, lattice parameters and grain size of the samples. Gold doping enhanced the formation high-Tc phase and increased the grain size. The possible reasons for the observed improvements in transport, microstructure and magnetic properties due to Au diffusion and diffusion-annealing time were discussed. © 2009 IOP Publishing Ltd.Scopus Influence of Sr/Nd partial replacement on fundamental properties of Bi-2223 superconducting system(2021-03-01) Dogruer M.; Aksoy C.; Yildirim G.; Ozturk O.; Terzioglu C.This comprehensive work aims to examine the change in flux pinning mechanism, physical, mechanical, and structural characteristics of pure and Sr-site Nd-substituted Bi1.8Pb0.35Sr1.9−yNdyCa2.2Cu3Ox (Bi-2223) systems. The magnetoresistivity performances for all the samples are carried out by magnetotransport experiments in the existence of external magnetic field strength intervals 0–7 T. It is found that the increment of Nd/Sr substitution amount in bulk Bi-2223 system retrogrades the pinning capability of thermal flux motions for interlayer Josephson junction between the isolated grains. Similarly, the coupling probabilities of copper pairs and potential energy barriers are significantly diminished by increasing Nd impurity. This is in association with the enhancement of permanent structural problems in the crystal structure. Therefore, the excessive Nd inclusions improve the reattached linear/split pancake-like nature. In this regard, the best magnetic performance quantities are obtained for the pure sample. Besides, the SEM images show that the grain connectivity and surface morphology damage significantly with the Nd impurity. Additionally, the experimental microhardness findings conducted at various external loads (0.245–2.940 N) display that the Nd purity in the superconducting system degrades dramatically the key design mechanical features. Besides, we analyze the mechanical characteristic properties founded on the theoretical approaches with the proportional sample resistance, elastic/plastic deformation, and Hays–Kendall methods. The results obtained show that the Nd purity causes the indentation size effect behavior to decrease dramatically for all the samples. Furthermore, the findings of Hays–Kendall method are noticed to much more agree with the real hardness parameters. Thus, the Hays–Kendall model is the best methods to find the load-independent Vickers hardness values for the Sr-site Nd-substituted Bi1.8Pb0.35Sr1.9−yNdyCa2.2Cu3Ox (Bi-2223) systems. Moreover, in the dynamic microhardness measurements, the contact depth (hc), elastic modulus (Er), and load (Pmax) of all the samples are experimentally recorded for the first time. The results reveal that the mechanical properties depend strongly on the load and Nd impurity level.Scopus Investigation of indentation size effect (ISE) and micro-mechanical properties of Lu added Bi2Sr2CaCu2Oy ceramic superconductors(2013-01-01) Ozturk O.; Erdem M.; Asikuzun E.; Yildiz O.; Yildirim G.; Varilci A.; Terzioglu C.In this study, we investigated the effect of the Lutetium (Lu) addition on microstructure and mechanical properties of the Bi-2212 superconductors annealed at 840 C for 50 h. The samples were prepared by the widely used conventional solid-state reaction method. For comparison, undoped sample was prepared in the same conditions. The prepared samples were characterized using X-ray powder diffraction (XRD), scanning electron microscope (SEM), and microhardness measurements (H v ). The volume fraction and lattice parameters were determined from the XRD measurements. The microstructure, surface morphology and orientation of the grains were investigated by SEM. In this study we have focused on microhardness measurements to investigate the mechanical properties. Vickers microhardness, load independent hardness, Young's modulus, fracture toughness and yield strength values were calculated separately for doped and undoped samples. Experimental results of hardness measurements were analyzed using the Meyer's law, proportional sample resistance (PSR)model, modified proportional sample resistance (MPRS) model, Elastic-Plastic deformation model (EPD), and Hays-Kendall (HK) approach. Finally, the Hays-Kendall (HK) approach was determined as the most successful model describing the mechanical properties of our samples. Moreover, lattice parameter c and volume fraction of Bi-2212 phase decreased with increasing Lu content. SEM measurements show that not only the surface morphology and grain connectivity were obtained to degrade but also the grain sizes of the samples were found to decrease with the increase of the Lu addition, as well. © 2012 Springer Science+Business Media, LLC.Scopus Investigation of mechanical and superconducting properties of iron diffusion-doped Bi-2223 superconductors(2011-09-01) Ozturk O.; Cetinkara H.A.; Asikuzun E.; Akdogan M.; Yilmazlar M.; Terzioglu C.The mechanical and superconducting properties of the Fe diffusion-doped (Bi-Pb)-2223 superconductor have been investigated. First, iron was evaporated on Bi-2223 superconductor and then the Fe layered superconductor was annealed at 830 °C for 10, 30 and 60 h. Static Vickers hardness, dc electrical resistivity, X-ray diffraction and scanning electron microcopy have been carried out to assess the effects of Fe doping. These measurements indicates that Fe doping, in comparison with the undoped samples, increased the critical transition temperature, and improved formation of high Tc phase, while decreasing the number and size of voids. Moreover, both microhardness and grain size were also enhanced by increasing the amount of diffusion. The values of microhardness were found to be load dependent. In addition, we have investigated the indentation size effect (ISE) behavior using some models such as the Kick's law, modified proportional specimen resistance (MPRS) model and the Hays- Kendall (HK) approach. Among them, both HK and MPRS models are successful. In this study, the possible reasons of noticed improvement on mechanical and physical properties due to iron diffusion are discussed. © Springer Science+Business Media, LLC 2011.Scopus Investigation of microstructural, Vickers microhardness and superconducting properties of YBa2Cu3-xGdxO 7-δ (0 ≤ x ≤ 0.150) superconducting ceramics via experimental and theoretical approaches(2013-04-01) Dogruer M.; Yildirim G.; Ozturk O.; Varilci A.; Soylu N.; Gorur O.; Terzioglu C.This study manifests the change of pinning mechanism, electrical, structural, physical, mechanical and superconducting properties of YBa 2Cu3-xGdxO7-δ superconductors samples prepared by the conventional solid-state reaction method (x = 0, 0.025, 0.050, 0.100 and 0.150) by use of dc resistivity, X-ray analysis (XRD), scanning electron microscopy (SEM) and Vickers microhardness measurements. Zero resistivity transition temperatures (T coffset ) of the samples are deduced from the dc resistivity measurements. Additionally, the lattice parameters are determined from XRD measurements when the microstructure, surface morphology and microhardness of the samples studied are examined by SEM and mechanical measurements, respectively. The results obtained demonstrate that T coffset values of the samples decrease slowly with the increase in the Gd content. The maximum T coffset (92.0 K) is obtained for the pure sample prepared at 940 C for 20 h in air atmosphere while the minimum value of 83.3 K is found for the sample doped with 0.150 Gd content. Moreover, it is obtained that J c values reduce from 132 to 34 A/cm2 with the enhancement of the Gd level in the crystalline structure. Further, the peak intensities belonging to Y123 (major) phase are obtained to decrease whereas the peak intensities of the minor phases such as BaCuO2 and Y211 are found to enhance systematically with the increment in the Gd content in the system, illustrating that partial substitution of Cu2+ ions by Gd3+ ions are carried out successfully. Moreover, SEM images display that the undoped sample obtains the best crystallinity and connectivity between superconducting grains and largest grain size whereas the worst surface morphology is observed for the maximum doped sample (x = 0.150). At the same time, Vickers microhardness, elastic modulus, load independent hardness, yield strength, fracture toughness and brittleness index values, playing important roles on the mechanical properties, are computed for all the samples. The experimental results of the microhardness measurements are examined using the Meyer's law, PSR (proportional specimen resistance), modified PRS, Elastic-Plastic deformation model (EPD) and Hays-Kendall (HK) approach. The microhardness values obtained increase with the enhancement of the Gd content in the samples. Besides, it is noted that the Hays-Kendall approach is the most successful model explaining the mechanical properties of the samples studied in this work. © 2012 Springer Science+Business Media New York.Scopus Microstructural and electrical characterizations of transparent Er-doped ZnO nano thin films prepared by sol–gel process(2017-10-01) Asikuzun E.; Ozturk O.; Arda L.; Terzioglu C.In this study, rare earth element (Er) doped ZnO nano thin films which have dual structure of (Zn1−xErx)O (x = 0.0, 0.01, 0.02, 0.03, 0.04 and 0.05) are prepared by using sol–gel method. The microstructure and electrical properties of prepared nano thin films are investigated. Nano thin films are coated on the glass substrate by using the dip coating method. The films are annealed at 600 °C for 30 min. The X-ray diffractometer (XRD), scanning electron microscopy and atomic force microscopy are used to determine the structural properties such as crystal structures, grain sizes, surface morphology; Hall effect measurements system is used to investigate the electrical properties of materials. XRD results showed that all Er doped nano thin films have a hexagonal structure and (002) orientation. Surface morphologies of ZnErO thin films are denser and more uniform than the undoped ZnO thin film. According to the Hall effect measurements, the resistivity of the films decreased with increasing Er concentration from 0 to 4 % and then slightly increased at 5 % Er.