Browsing by Author "Tavşanoğlu, Ülkü Nihan"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Pubmed Size-selective microplastic uptake by freshwater organisms: Fish, mussel, and zooplankton.(2023-08-24) Başaran Kankılıç, Gökben; Koraltan, İdris; Erkmen, Belda; Çağan, Ali Serhan; Çırak, Tamer; Özen, Mihriban; Seyfe, Melike; Altındağ, Ahmet; Tavşanoğlu, Ülkü NihanMicroplastics, as an emergent pollutant, have garnered substantial attention within aquatic environments, yet a significant knowledge gap persists regarding the interplay of organism size and pollution impacts on microplastic uptake in freshwater ecosystems. The main aim of the current study is to assess the microplastic ingestion by aquatic organisms across diverse trophic levels. To achieve this objective, zooplankton, mussels (Anodonta anatina), and fish (Carassius gibelio) were collected from the highly polluted Susurluk River Basin in Türkiye. The size distribution encompassed 160.8 ± 56.9 μm for the prevailing zooplankton, 6.9 ± 2.2 cm for mussel, and 20.4 ± 3.1 cm for fish, respectively. While no microplastic ingestion was observed among zooplankton, the finding highlights the influence of body-size and pollution on microplastic ingestion. In contrast, A. anatina and C. gibelio contained 617 and 792 microplastic particles, respectively. Predominantly, fibers emerged as the most prevalent microplastic type across trophic levels (except zooplankton) followed by films. Notably, only fish exhibited fragments within their gastrointestinal tract. A substantial correlation emerged between microplastic abundance and mussel size and weight, but no such correlation manifested for fish. The study also revealed a positive link between microplastic count and turbidity (phosphate and high Chl a level), impacting mussel ingestion capacity due to the variability in the food availability and potential shifts in feeding preferences. Conversely, no distinct pattern emerged for fish concerning water quality parameters and ingested microplastics. Consequently, our study underscores diverse microplastic uptake patterns in freshwater ecosystems, with a predominant frequency of microplastics falling with the 0.3 mm-3.0 mm range, emphasizing the significance of size-selective uptake by organisms.Pubmed Tracking the microplastic accumulation from past to present in the freshwater ecosystems: A case study in Susurluk Basin, Turkey.(2022-09-01T00:00:00Z) Almas, Fatma Feisal; Bezirci, Gizem; Çağan, Ali Serhan; Gökdağ, Kerem; Çırak, Tamer; Başaran Kankılıç, Gökben; Paçal, Elif; Tavşanoğlu, Ülkü NihanMicroplastic pollution in aquatic ecosystems has become a global issue in recent years due to its presence everywhere around the world. Although several studies have explored the impact of the accumulation of those small particles in marine environments, comparisons of freshwater systems with marine environments are scarce. In the current study, due to the lack of long-term data on microplastic pollution, we used paleolimnological approaches to acquire the missing information regarding this hot topic. Two short cores were taken from Bursa province in Turkey, which is the center of industrial and agricultural production with many different sectors such as textile and manufacturing. The first core sample was taken from a relatively pristine environment, Lake Uluabat, and the second one was taken from a delta area where all the discharge coming from the basin flowed through to the Marmara Sea. The sediment core from the lake was dated back to the 1960's and the majority of the sample was dominated by fibers. Despite there being no uniform distribution pattern, the number of the microplastics showed decreasing trend after the lake became a Ramsar site. Due to the continuous mixing in the sampling area, there were obstacles via the dating of the Delta core. Nevertheless, the data showed that a high number and variety of microplastics have accumulated over the last decade in the province. This can be interpreted as microplastic pollution reaching the sea directly from the basin. These findings revealed that a plastic chronostratigraphy would give important temporal data regarding the microplastic accumulation in aquatic ecosystems.