Browsing by Author "Taslimi P."
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Scopus 1,2,3-Triazole substituted phthalocyanine metal complexes as potential inhibitors for anticholinesterase and antidiabetic enzymes with molecular docking studies(2022-01-01) Koçyiğit Ü.M.; Taslimi P.; Tüzün B.; Yakan H.; Muğlu H.; Güzel E.In recent years, acetylcholinesterase (AChE) and α-glycosidase (α-gly) inhibition have emerged as a promising and important approach for pharmacological intervention in many diseases such as glaucoma, epilepsy, obesity, cancer, and Alzheimer's. In this manner, the preparation and enzyme inhibition activities of peripherally 1,2,3-triazole group substituted metallophthalocyanine derivatives with strong absorption in the visible region were presented. These novel metallophthalocyanine derivatives (2-6) effectively inhibited AChE, with Ki values in the range of 40.11 ± 5.61 to 78.27 ± 15.42 µM. For α-glycosidase, the most effective Ki values of compounds 1 and 2 were with Ki values of 16.11 ± 3.13 and 18.31 ± 2.42 µM, respectively. Also, theoretical calculations were investigated to compare the chemical and biological activities of the ligand (1) and its metal complexes (2–6). Biological activities of 1 and its complexes against acetylcholinesterase for ID 4M0E (AChE) and α-glycosidase for ID 1R47 (α-gly) are calculated. Theoretical calculations were compatible with the experimental results and these 1,2,3-triazole substituted phthalocyanine metal complexes were found to be efficient inhibitors for anticholinesterase and antidiabetic enzymes. Communicated by Ramaswamy H. Sarma.Scopus Determination of biological studies and molecular docking calculations of isatin-thiosemicarbazone hybrid compounds(2022-09-15) Koçyiğit Ü.M.; Doğan M.; Muğlu H.; Taslimi P.; Tüzün B.; Yakan H.; Bal H.; Güzel E.; Gülçin İ.Design, synthesis, structural elucidation, and investigation of cytotoxic and antimicrobial activity, butyrylcholinesterase (BChE), and acetylcholinesterase (AChE) enzyme inhibition effects of isatin-thiosemicarbazone hybrid compounds (1–15) are reported in this study. Hybrid compounds (14 and 15) were synthesized, isolated, and characterized for the first time. FT-IR, 1H NMR, and 13C NMR spectroscopic methods and elemental analysis were used to characterize the structures of the compounds. In the enzymatic evaluation, hybrid compound 13 was observed as the most potent inhibitor of AChE with a Kİ value of 0.94 ± 0.13 µM (all compound Kİ values between 0.94 ± 0.13 and 4.47 ± 0.92), also this compound was observed as the most potent inhibitor of BChE with a Kİ value of 0.82 ± 0.11 µM (all compounds had Kİ values between of 0.82 ± 0.11 and 3.48 ± 0.92). Almost all compounds were shown better inhibition profile than standard compound. In the theoretical calculations, the comparison of the biological activities of isatin-thiosemicarbazone hybrid derivatives against enzymes was studied. The enzymes studied in docking calculations are AChE and BChE. Then, ADME/T analysis was conducted to examine the drug properties of these derivatives. Besides, the antimicrobial activity of these molecules was investigated by the microdilution method according to Clinical Laboratory Standards Institute (CLSI) criteria in the study. Cytotoxic activity of isatin-thiosemicarbazone hybrids was determined by the XTT cell viability assay on human breast cancer cell lines MCF-7 and MDA-MB-231. Among the hybrid compounds, compound 8 exhibited the most potent cytotoxic activity with IC50 values of 23.42 ± 0.21 µg/mL and 19.68 ± 0.23 µg/mL on MCF-7 and MDA-MB-231 cell lines, respectively. Overall, the hybridization of isatin and thiosemicarbazone skeleton has played an essential role in the inhibition of enzymes and cytotoxic activity.Scopus ISATIN/THIOSEMICARBAZONE HYBRIDS: FACILE SYNTHESIS, AND THEIR EVALUATION AS ANTI-PROLIFERATIVE AGENTS AND METABOLIC ENZYME INHIBITORS(2023-01-01) Yakan H.; Azam M.; Kansiz S.; Muǧlu H.; Ergül M.; Taslimi P.; Koçyiǧit Ü.M.; Karaman M.; Al-Resayes S.I.; Min K.Scopus Potential thiosemicarbazone-based enzyme inhibitors: Assessment of antiproliferative activity, metabolic enzyme inhibition properties, and molecular docking calculations(2022-05-01) Yakan H.; Koçyiğit Ü.M.; Muğlu H.; Ergul M.; Erkan S.; Güzel E.; Taslimi P.; Gülçin İ.A new series of thiosemicarbazone derivatives (1–11) were prepared from various aldehydes and isocyanates with high yields and practical methods. The structures of these compounds were elucidated by Fourier transform infrared, 1H-nuclear magnetic resonance (NMR), 13C-NMR spectroscopic methods and elemental analysis. Cytotoxic effects of target compounds were determined by 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide assay and compound 1 showed significant cytotoxic activity against both MCF-7 and MDA-MB-231 cells, with half-maximal inhibitory concentration values of 2.97 μM and 6.57 μM, respectively. Moreover, in this study, the anticholinergic and antidiabetic potentials of these compounds were investigated. To this aim, the effect of the newly synthesized thiosemicarbazone derivatives on the activities of acetylcholinesterase (AChE) and αglycosidase (α-Gly) was evaluated spectrophotometrically. The title compounds demonstrated high inhibitory activities compared to standard inhibitors with Ki values in the range of 122.15–333.61 nM for α-Gly (Ki value for standard inhibitor = 75.48 nM), 1.93–12.36 nM for AChE (Ki value for standard inhibitor = 17.45 nM). Antiproliferative activity and enzyme inhibition at the molecular level were performed molecular docking studies for thiosemicarbazone derivatives. 1M17, 5FI2, and 4EY6, 4J5T target proteins with protein data bank identification with (1–11) compounds were docked for anticancer and enzyme inhibition, respectively.