Browsing by Author "Saracoglu M."
Now showing 1 - 18 of 18
- Results Per Page
- Sort Options
Scopus Adsorption behavior and corrosion inhibitive characteristics of newly synthesized cyano-benzylidene xanthenes on copper/sodium hydroxide interface: Electrochemical, X-ray photoelectron spectroscopy and theoretical studies(2020-11-15) Khalifa M.E.; El Azab I.H.; Gobouri A.A.; Mersal G.A.M.; Alharthi S.; Saracoglu M.; Kandemirli F.; Ryl J.; Amin M.A.Elegant process for synthesis of 3-(7H-dibenzo[c,h]xanthen-7-yl)benzaldehyde (3), as new starting material to create a set of novel xanthene analogues, 2-(3-(7H-dibenzo[c,h]xanthen-7-yl)benzylidene)malononitrile (4), 3-(3-(7H-dibenzo[c,h]xanthen-7-yl)phenyl)-2-cyanoacrylic acid (5), and Ethyl-3-(3-(7H-dibenzo[c,h]xanthen-7-yl)phenyl)-2-cyanoacrylate (6), was achieved starting with available materials under mild conditions. Various concentrations (ca. 0.1–1.0 mM) of the synthesized cyano-benzylidene xanthene derivatives, namely compounds 3–6, were tested as inhibitors to control copper corrosion in alkaline solutions employing polarization and electrochemical impedance spectroscopy (EIS) measurements. Results revealed that the four studied xanthenes derivatives served as efficient (mixed-type) inhibitors. The inhibition efficiency increased with increase in inhibitor concentration.The inhibition performance of studied compounds varied according to their chemical structures. The best inhibitor, compound (5), achieved a maximum inhibition efficiency of 98.7% (calculated from corrosion current densities) and ~ 95% (estimated from charge-transfer resistance values) at a concentration of 1.0 mM. The morphology of the corroded and inhibited copper surfaces was studied by scanning electron microscopy (SEM). The adsorption of the inhibitor molecules was confirmed by high-resolution X-ray photoelectron spectroscopy (XPS) profiles. XPS data were used to compare the inhibition efficiencies exhibited by studied compounds. The oxidation rate of the Cu surface was found to be frivolous, referring to high inhibition efficiency, only in the presence of inhibitor (5), and Cu0 share is 87% of all copper components. The shares of Cu0 were significantly reduced to 43%, 26% and 20% for inhibitors (3), (4) and (6), respectively. These findings go parallel with the results obtained from electrochemical measurements. The quantum-chemical calculations of the investigated molecules were performed to support electrochemical findings, and their correlations with the inhibition efficiency of the synthesized compounds were discussed.Scopus Cathodic activation of titanium-supported gold nanoparticles: An efficient and stable electrocatalyst for the hydrogen evolution reaction(2016-04-27) Amin M.A.; Fadlallah S.A.; Alosaimi G.S.; Kandemirli F.; Saracoglu M.; Szunerits S.; Boukherroub R.As-polished titanium (Ti) substrates decorated with dispersed gold nanoparticles (Au NPs/Ti) of various sizes and densities were prepared here to effectively catalyze hydrogen evolution reaction (HER) in 0.5 M H2SO4. These materials were synthesized adopting a facile one-step wet chemical method without using reducing agents, stabilizers, or any chemical pre-treatment, where Ti acts as both the reducing agent and support. This was achieved via soaking the Ti substrates for 30 min in a gold precursor bath as a function of temperature (5-65°C). Morphological characterizations of the synthesized Au NPs/Ti catalysts indicated a size decrease and density increase of loaded Au NPs with the rise of temperature. Cathodic polarization measurements revealed that the catalyst loaded with the highest density of Au NPs exhibited the best HER activity with onset potential (EHER), exchange current density (jo), and Tafel slope (βc) of -44 mV (RHE), 6.0 × 10-3 mA cm-2, and 40 mV decade-1, respectively. This activity has markedly increased upon cathodic activation (cathodic pre-polarization treatment at -2 V (SCE) for 12 h) that yielded a Ti substrate with a porous-like network structure decorated with highly dispersed Au NPs. In addition, a catalytically active TiH2 phase was formed (as evidenced from XRD and XPS) on such a porous substrate. Such cathodically pre-treated catalyst recorded HER electrochemical parameters of -18 mV (RHE), 0.117 mA cm-2, and 38 mV decade-1, thus approaching the commercial Pt/C catalyst (EHER: 0.0 mV, jo: 0.78 mA cm-2, and βc: 31 mV dec-1). The stability of the best catalyst was assessed employing cyclic polarization and chronoamperometry measurements. It exhibited a good stability with improved activity during stability testing.Scopus Corrosion behaviour of new oxo-pyrimidine derivatives on mild steel in acidic media: Experimental, surface characterization, theoretical, and Monte Carlo studies(2022-02-01) Ferigita K.S.M.; AlFalah M.G.K.; Saracoglu M.; Kokbudak Z.; Kaya S.; Alaghani M.O.A.; Kandemirli F.In this work, the effects of new compounds, namely, 1-amino-5-(4-methylbenzoyl)-4-(4-methylphenyl) pyrimidin-2 (1H)-thione (AMMP), and 1-(5-(4-Methoxybenzoyl)-4-(4-methoxyphenyl) 2-oxopyrimidin-1 (2H)-yl)-3-phenylthiourea (MMOPH) has been successfully investigated as a corrosion inhibitor for mild steel in a 1 M HCl solution. This investigation has been done by electrochemical techniques (potentiodynamic polarization, and electrochemical impedance spectroscopy), surface characterization (scanning electron microscopy with energy dispersive x-ray spectroscopy, and atomic force microscopy), and theoretical calculations (density function theory and Monte Carlo simulation). The electrochemical results showed that both compounds act as mixed-type inhibitors. However, MMOPH is more efficient than AMMP (95.9% compared with 84.1% at 5 × 10−4 M and an immersion time of 1 h). Additionally, the effect of immersion time on inhibitor efficiency was studied. The current density was reduced with the presence of inhibitors from 517.93 to 56.18 and 9.96 μA.cm−2 at 5 × 10−4 M and an immersion time of 1 h for AMMP and MMOPH, respectively. In both substances, the Langmuir isotherm system showed the best fit, with physisorption and chemisorption being the types of adsorption. The results of surface characterization indicated that both compounds can be adsorbed on mild steel surfaces to minimize corrosion. The obtained Monte Carlo simulation results suggest that the inhibitors are adsorbed vertically and the formation of a protective layer on the metal surface. The density function theory calculations for inhibitors found the protonated state is more reactive than the neutral state and agree with experimental results and follow the order MMOPH ˃ AMMP. The results showed that both compounds can be used as new corrosion inhibitors for mild steel in aggressive environments.Scopus Corrosion inhibition of mild steel in acidic media using new oxo-pyrimidine derivatives: Experimental and theoretical insights(2023-07-15) Ferigita K.S.M.; Saracoglu M.; AlFalah M.G.K.; Yilmazer M.I.; Kokbudak Z.; Kaya S.; Kandemirli F.Interesting results have been found for new compounds derived from oxo-pyrimidine to protect of mild steel (MS) in 1 M hydrochloric acid. These the compounds are 1-(5-(4-Methoxy-benzoyl)-4-(4‑methoxy-phenyl)-2-oxo-2H-pyrimidin-1-yl]-(4‑methoxy-phenyl)-urea (MMOM) and 1-(5-(4‑methoxy-benzoyl)-4-(4‑methoxy-phenyl)-2-oxo-2H-pyrimidin-1-yl)-3-(4-methlyphenyl)-thiourea (MMOPM). In this study, the impact of immersion time on inhibitor effectiveness was also investigated. Both substances function as mixed-type inhibitors, according to the electrochemical data. At 5 × 10−4 M and a 72-hour immersion duration, MMOM is more effective than MMOPM (98.42% vs. 94.49%). The Langmuir isotherm system provided the best match for both compounds, with chemisorption as the kind of adsorption. According to the findings of surface characterisation, both chemicals may be adsorbed on mild steel surfaces to reduce corrosion. Inhibitor simulations using density functional theory revealed that the protonated state is more reactive than the neutral state and coincides with experimental findings. The outcomes demonstrated that both compounds may be utilised as new mild steel corrosion inhibitors in harsh conditions and long-term immersion. The theoretical study, based on quantum chemical calculations of the compounds, performed by the DFT/BP86 method with a 6–311G(d,p) basis set by using Gaussian 09, Revision A.02 program, were also included to support experimental results. The various quantum chemical parameters such as EHOMO, ELUMO, chemical hardness and chemical softness, electronegativity of the investigated molecules were calculated, and their inhibition efficiency were discussed. The outcomes demonstrated that both compounds may be utilised as new mild steel corrosion inhibitors in harsh conditions and long-term immersion.Scopus Corrosion inhibition performance of 2-ethyl phenyl-2, 5-dithiohydrazodicarbonamide on Fe (110)/Cu (111) in acidic/alkaline solutions: Synthesis, experimental, theoretical, and molecular dynamic studies(2022-09-01) AlFalah M.G.K.; Guo L.; Saracoglu M.; Kandemirli F.Herein, 2-ethyl phenyl-2,5-dithiohydrazodicarbonamide (2EPDCA) was synthesised and tested as a corrosion inhibitor for mild steel (MS) and copper (Cu) in 1 M HCl and 3.5% NaCl, respectively. Fourier transform infrared spectroscopy (FT-IR) and (NMR) nuclear magnetic resonance (1H, 13C) were used to identify the chemical structure. Both experimental and computational approaches have been conducted to evaluate inhibitor efficiency on both metal systems. The electrochemical results showed that the 2EPDCA inhibition efficiency for MS systems was 95% at 1 × 10−2 M, while in copper systems it was 97.5% at 1 × 10−2 M. The Langmuir adsorption isotherm was fitted using adsorption surface coverage data, and for inhibitor in both systems, the kind of adsorption was mixed (physisorption and chemisorption). Through scanning electron microscopy (SEM), EDX, and atomic force microscopy (AFM) tests, we have confirmed the presence of the inhibitor molecules on the metal surface in both systems. Quantum chemistry simulations indicate that the superior corrosion inhibition efficacy of 2EPDCA on copper compared to mild steel surfaces is attributable to the former's greater electron donating propensity on copper. The adsorption of 2EPDCA molecules on Fe (110) and Cu (111) surfaces was further verified by molecular dynamic simulations, with the former having a greater adsorption energy. The results indicate that the corrosion inhibitor was effective even in harsh conditions, and it can be thought of as a novel corrosion inhibitor for mild steel and copper that provides good protection.Scopus Corrosion performance of electrospinning nanofiber ZnO-NiO-CuO/polycaprolactone coated on mild steel in acid solution(2020-12-01) AlFalah M.G.K.; Kamberli E.; Abbar A.H.; Kandemirli F.; Saracoglu M.In the present work, PCL/ZnO (polycaprolactone/ zinc oxide), PCL/NiO (polycarprolactone/nickel oxide), PCL/CuO (polycarprolactone/copper oxide), and PCL/ZnO-NiO-CuO (polycarprolactone/ zinc oxide- nickel oxide- copper oxide) have been successfully fabricated and deposited on a mild steel through electrospinning technique. SEM, EDX, and FT-IR had been used to characterize all nanofiber coatings on the mild steel. A nanofiber layer of ZnO/NiO/CuO/PCL was utilized to coating the mild steel as a corrosion protector film in 1M HCl. A series of electrochemical techniques like Open circuit potential (OCP), Electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR), and potentiodynamic polarization (PDP) were used to analyse the anti-corrosion performance of the nanofiber layer ZnO/NiO/CuO/PCL. The results showed that both anodic and cathodic reactions sharp decline with shift in corrosion potential toward a positive direction in the Tafel plots. LPR results showed that the highest protection efficiency was 94.8% with ZnO-NiO-CuO/PCL nanofiber coating. EIS spectra showed that mild steel coated with ZnO/PCL, NiO/PCL, CuO/PCL, and ZnO-NiO-CuO/PCL, realization of capacitive conduct at high frequency and coating strength at law frequency part with resistor component 474.76 ohm.cm2, 527.35 ohm.cm2, 714.73 ohm.cm2, 744.80 ohm.cm2 respectively, indicating the good barrier properties and high ohmic resistance of coatings. SEM displayed a straight, interconnected structure, relatively less porosity with uniform fibers diameter. The fibers had average diameter 429 nm, 525 nm, 639 nm, and 443 nm for ZnO/PCL, NiO/PCL, CuO/PCL, and ZnO-NiO-CuO/PCL respectively. EDX and FT-IR results confirmed the existence of ZnO, NiO, and CuO and approved the distribution into PCL matrix. Results of the present study confirmed that ZnO-NiO-CuO/PCL electrospinning nanfiber coating could be considered as a new metallic oxide nanocomposite coating for a mild steel with excellent corrosion resistance.Scopus Electrochemical, theoretical and surface physicochemical studies of the alkaline copper corrosion inhibition by newly synthesized molecular complexes of benzenediamine and tetraamine with π acceptor(2020-12-15) Ibrahim M.M.; Mersal G.A.M.; Fallatah A.M.; Saracoglu M.; Kandemirli F.; Alharthi S.; Szunerits S.; Boukherroub R.; Ryl J.; Amin M.A.Two charge transfer complexes, namely [(BDAH)+(PA−)] CT1 [(BTAH)2+(PA−)2] and CT2 (BDAH = 1,2-benzenediamine, BTAH = 1,2,4,5-benzenetetramine, and PA− = 2,4,6-trinitrophenolate), were synthesized and fully characterized using various spectroscopic techniques. CT1 and CT2 were tested as inhibitors to effectively control the uniform and anodic corrosion processes of copper in an alkaline electrolyte (1.0 M KOH) using various electrochemical techniques. As a reference point, results were compared with the potassium salt of the π-acceptor potassium 2,4,6-trinitrophenolate (designated here as PA−K+). The highest inhibition efficiency (97%) was recorded for inhibitor CT2 at a concentration of 1.0 mM. The inhibition mechanism was discussed based on scanning electron microscopy and X-ray photoelectron spectroscopy results of the corroded and inhibited Cu surfaces. A theoretical study, based on quantum-chemical calculations of the synthesized compounds, performed by the DFT/B3LYP method with a 6-311++G(2d,2p) basis set by using Gaussian 09, Revision A.02 program, was also included to support experimental findings. The various quantum chemical parameters such as EHOMO, ELUMO, chemical hardness, and chemical softness of the investigated molecules were calculated, and their correlation with the inhibition efficiency of the synthesized compounds was discussed.Scopus ETM and ANN study for polysubstituted 2H-pyran-2-ones(2013-09-01) Saracoglu M.; Basaran M.A.; Thul P.; Sayiner H.; Kandemirli S.G.; Gupta V.P.; Kandemirli F.The structure glutamate pyruvate transaminase (GPT), glutamate oxaloacetate transaminase (GOT), acid phosphatase (ACP), alkaline phosphatase (ALP) and glutamate dehydrogenase (GlDH) activity relationships of 2H-pyran-2-ones polysubstitutes being a new class of hepatoprotective agents have been investigated by means of the Electronic-Topological Method (ETM) and two Statistical Analysis. Molecular fragments specific for active compounds were calculated for 2H-pyran-2-ones polysubstitutes by applying the ETM. QSAR descriptors such as molecular weight, EHOMO, ELUMO, ΔE, chemical potential, softness, electrophilicity index, dipole moment, etc were calculated. In order to examine the relationship between independent and dependent variables, both Partial Least Squares Regression and ANNs are employed to determine the relationship since the data set consists of highly nonlinearity and multicolinearity. It is observed that ANN has surpassed both PLS2 and PLS1 in terms of better modeling and validation. © 2013 Bentham Science Publishers.Item Investigation Of Structure Activity Relationships Of Influenza Fusion Inhibitors By Using Electronic Topological Method(2009) Kandemirli F.; Saracoglu M.; Arslan T.Item Qsar Study Inhibition Efficiency And Quantum Chemical Descriptor For Some Amino Acids On Cold Rolled Steel İn Hcl(2011) Başaran M.A; Amin M:A; Kandemirli F.; Saracoglu M.; Arslan T.Item Structure Activity Relationship Study By Etm Method On Potent Trypanocidal Thio Semicarbazone Inhibitors Of The Trypanosomal Cysteine Protease Cruzain(2009) Kandemirli F.; Saracoglu M.; Cavusoglu I.Scopus Synthesis and characterization of new 1,3,4-thiadiazole derivatives: study of their antibacterial activity and CT-DNA binding(2022-10-17) Sayiner H.S.; Yilmazer M.I.; Abdelsalam A.T.; Ganim M.A.; Baloglu C.; Altunoglu Y.C.; Gür M.; Saracoglu M.; Attia M.S.; Mahmoud S.A.; Mohamed E.H.; Boukherroub R.; Al-Shaalan N.H.; Alharthi S.; Kandemirli F.; Amin M.A.1,3,4-Thiadiazole molecules (1-4) were synthesized by the reaction of phenylthiosemicarbazide and methoxy cinnamic acid molecules in the presence of phosphorus oxychloride, and characterized with UV, FT-IR, 13C-NMR, and 1H-NMR methods. DFT calculations (b3lyp/6-311++G(d,p)) were performed to investigate the structures' geometry and physiochemical properties. Their antibacterial activity was screened for various bacteria strains such as Enterobacter aerogenes, Escherichia coli ATCC 13048, Salmonella kentucky, Pseudomonas aeruginosa, Klebsiella pneumoniae, Proteus and Gram positive such as Staphylococcus aureus ATCC 25923, Listeria monocytogenes ATCC 7644, Enterococcus faecium, Enterococcus durans, Staphylococcus aureus ATCC, Serratia marcescens, Staphylococcus hominis, Staphylococcus epidermidis, alfa Streptococcus haemolyticus, Enterococcus faecium and found to have an inhibitory effect on Klebsiella pneumoniae and Staphylococcus hominis, while molecules 1, 3 and 4 had an inhibitory effect on Staphylococcus epidermidis and alpha Streptococcus haemolyticus. The experimental results were supported by the docking study using the Kinase ThiM from Klebsiella pneumoniae. All the investigated compounds showed an inhibitory effect for the Staphylococcus epidermidis protein. In addition, the mechanism of the 1-4 molecule interaction with calf thymus-DNA (CT-DNA) was investigated by UV-vis spectroscopic methods.Scopus Synthesis and DFT quantum chemical calculations of 2-oxopyrimidin-1(2H)-yl-urea and thiorea derivatives(2019-01-01) Saracoglu M.; Kokbudak Z.; Yalcin E.; Kandemirli F.Summary: A series of the new 2-oxopyrimidin-1(2H)-yl-urea (3a-c) and thiourea (4a-d) derivatives were synthesized by the reaction of arylisocyanates (2a-c) or arylisothiocyanates (2d-g) and the 1-amino-5-(4-methoxybenzoyl)-4-(4-methoxyphenyl)pyrimidin-2(1H)-one (1). The structures of the compounds 3a-c and 4a-d were characterized by elemental analysis, FT-IR, 1H and 13C-NMR spectroscopic techniques. In addition to experimental study in order to find molecular properties, quantum-chemical calculations of the synthesized compounds were carried out by using DFT/B3LYP method with basis set of the 6-311G(d,p). Quantum chemical features such as HOMO, LUMO, HOMO-LUMO energy gap, Ionization potential, chemical hardness, chemical softness, electronegativity, chemical potential, dipole moment etc. values for gas and solvent phase of neutral molecules were calculated and discussed.Scopus Synthesis and DFT quantum chemical calculations of novel pyrazolo[1,5-c]pyrimidin-7(1H)-one derivatives(2019-01-01) Saracoglu M.; Kokbudak Z.; Çimen Z.; Kandemirli F.Summary: In this study, a convenient procedure for the preparation of pyrazolo[1,5-c]pyrimidin- 7(1H)-one derivatives is described. The new pyrazolo[1,5-c]pyrimidin-7(1H)-one derivatives (2a, b) were synthesized from the cyclocondensation reaction of the compounds 1-amino-5-(4- methoxybenzoyl)-4-(4-methoxyphenyl)pyrimidin-2(1H)-one (1a) and 1-amino-5-(4-methylbenzoyl)- 4-(4-methylphenyl)pyrimidin-2(1H)-one (1b) with α-chloroacetone. The structures of the compounds (2a, b) were characterized by elemental analysis, FT-IR, 1H-NMR and 13C-NMR spectroscopic techniques. In addition to experimental study in order to find molecular properties, quantum-chemical calculations of the new pyrazolo[1,5-c]pyrimidin-7(1H)-one derivatives (2a, b) were carried out by using DFT/B3LYP method with the 6-311G(d,p) and 6-311++G(2d,2p) basic sets. Quantum chemical features such as HOMO, LUMO, HOMO-LUMO energy gap, chemical hardness, chemical softness, electronegativity, chemical potential, dipole moment etc. values for gas and solvent phase of neutral molecules were calculated and discussed.Scopus Synthesis and DFT Studies of pyrimidin-1(2H)-ylaminofumarate Derivatives(2020-10-01) Saracoglu M.; Kokbudak Z.; Yilmazer M.I.; Kandemirli F.Pyrimidine derivatives have biological and pharmacological properties. Therefore, in this study we focused on the synthesis various Pyrimidine derivatives to make noteworthy contributions this class of heterocyclic compounds. In the present study, the new compounds (4-6) were obtained by the reactions of 1-amino-5-benzoyl-4-phenylpyrimidin-2(1H)-one (1), 1-amino-5- (4-methylbenzoyl)-4-(4-methylphenyl)pyrimidin-2(1H)-one (2) and 1-amino-5-(4-methoxybenzoyl)- 4-(4-methoxyphenyl)pyrimidin-2(1H)-one (3) with dimethyl acetylenedicarboxylate. The structures of these compounds were proved by elemental analysis, FT-IR, 1H and 13C-NMR spectra. In addition to, quantum chemical calculations were made to find molecular properties of the pyrimidin-1(2H)- ylaminofumarate derivatives (4-6) by using DFT/B3LYP method with 6-311++G(2d,2p) basis set. Quantum chemical features such as EHOMO, ELUMO, energy gap, ionization potential, chemical hardness, chemical softness, electronegativity etc. values for gas and solvent phase of neutral molecules were calculated and discussed.Scopus Synthesis of Cyano-Benzylidene Xanthene Synthons Using a Diprotic Brønsted Acid Catalyst, and Their Application as Efficient Inhibitors of Aluminum Corrosion in Alkaline Solutions(2022-09-01) Amin M.A.; Mersal G.A.M.; El-Hendawy M.M.; Shaltout A.A.; Badawi A.; Boman J.; Gobouri A.A.; Saracoglu M.; Kandemirli F.; Boukherroub R.; Ryl J.; Khalifa M.E.Novel cyano-benzylidene xanthene derivatives were synthesized using one-pot and condensation reactions. A diprotic Brønsted acid (i.e., oxalic acid) was used as an effective catalyst for the promotion of the synthesis process of the new starting xanthene–aldehyde compound. Different xanthene concentrations (ca. 0.1–2.0 mM) were applied as corrosion inhibitors to control the alkaline uniform corrosion of aluminum. Measurements were conducted in 1.0 M NaOH solution using Tafel extrapolation and linear polarization resistance (LPR) methods. The investigated xanthenes acted as mixed-type inhibitors that primarily affect the anodic process. Their inhibition efficiency values were enhanced with inhibitor concentration, and varied according to their chemical structures. At a concentration of 2.0 mM, the best-performing studied xanthene derivative recorded maximum inhibition efficiency values of 98.9% (calculated via the Tafel extrapolation method) and 98.4% (estimated via the LPR method). Scanning electron microscopy (SEM) was used to examine the morphology of the corroded and inhibited aluminum surfaces, revealing strong inhibitory action of each studied compound. High-resolution X-ray photoelectron spectroscopy (XPS) profiles validated the inhibitor compounds’ adsorption on the Al surface. Density functional theory (DFT) and Monte Carlo simulations were applied to investigate the distinction of the anticorrosive behavior among the studied xanthenes toward the Al (111) surface. The non-planarity of xanthenes and the presence of the nitrile group were the key players in the adsorption process. A match between the experimental and theoretical findings was evidenced.Scopus Synthesis, cytotoxic activity and quantum chemical calculations of new 7-thioxopyrazolo[1,5-f]pyrimidin-2-one derivatives(2020-02-15) Kökbudak Z.; Saracoglu M.; Akkoç S.; Çimen Z.; Yilmazer M.I.; Kandemirli F.The reactions of 1-amino-2-thioxo-1,2-dihydropyrimidin derivatives 1 and 2 with chloroacetyl chloride in the presence of sodium acetate led to the formation of 7-thioxopyrazolo [1,5-f]pyrimidin-2(1H,3H,7H)-one derivatives (3 and 4) in 78–80% yields. The structure of these newly synthesized compounds 3 and 4 were fully characterized by 1H NMR, 13C NMR, FT-IR spectroscopies and elemental analyses. The quantum-chemical calculations were made to find molecular properties of the 3 and 4 by using DFT/B3LYP method with 6–311++G(2d, 2p) basis set. Quantum chemical features such as HOMO, LUMO, energy gap, ionization potential, chemical hardness, softness, electronegativity, dipole moment and etc. values for gas and solvent phase of neutral molecules were calculated and discussed. Furthermore, the cytotoxic activities of 3 and 4 were tested against human liver cancerous cell line (HepG2) and human breast cancerous cell line (MDA-MB-231) for 24 h and 48 h, respectively.Scopus The quantum chemical calculations of serine, therionine and glutamine(2014-01-01) Kandemirli F.; Saracoglu M.; Amin M.A.; Basaran M.A.; Vurdu C.D.An examination of quantum chemical and corrosion inhibition studies for three serine (Ser), therionine (Thr) and glutamine (Glu) which had been tested as corrosion safe inhibitors for cold rolled steel (CRS) in 1.0 M HCl solutions at different temperatures (283-333 K) were made to see if any clear links exist between them. The Genetic Function Approximation Method has been used for QSAR study. The correlation between inhibition efficiency and descriptor variables obtained from the quantum chemical calculation using B3LYP/6-311G(d,p), B3LYP/6-311++G(2d,2p), MP2/6-311G(d,p), and CBS-APNO methods. © 2014 The Authors.