Browsing by Author "Ozkaraca O."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Scopus Estimating the properties of ground-waste-brick mortars using DNN and ANN(2019-01-01) Karaci A.; Yaprak H.; Ozkaraca O.; Demir I.; Simsek O.In this study, deep-neural-network (DNN)- and artificial-neural-network (ANN)-based models along with regression models have been developed to estimate the pressure, bending and elongation values of ground-brick (GB)-added mortar samples. This study is aimed at utilizing GB as a mineral additive in concrete in the ratios 0.0%, 2.5%, 5.0%, 7.5%, 10.0%, 12.5% and 15.0%. In this study, 756 mortar samples were produced for 84 different series and were cured in tap water (W), 5% sodium sulphate solution (SS5) and 5% ammonium nitrate solution (AN5) for 7 days, 28 days, 90 days and 180 days. The developed DNN models have three inputs and two hidden layers with 20 neurons and one output, whereas the ANN models have three inputs, one output and one hidden layer with 15 neurons. Twenty-five previously obtained experimental sample datasets were used to train these developed models and to generate the regression equation. Fifty-nine non-training-attributed datasets were used to test the models. When these test values were attributed to the trained DNN, ANN and regression models, the brick-dust pressure as well as the bending and elongation values have been observed to be very close to the experimental values. Although only a small fraction (30%) of the experimental data were used for training, both the models performed the estimation process at a level that was in accordance with the opinions of experts. The fact that this success has been achieved using very little training data shows that the models have been appropriately designed. In addition, the DNN models exhibited better performance as compared with that exhibited by the ANN models. The regression model is a model whose performance is worst and unacceptable; further, the prediction error is observed to be considerably high. In conclusion, ANN- and DNN-based models are practical and effective to estimate these values.Scopus Prediction of traumatic pathology by classifying thorax trauma using a hybrid method for emergency services(2020-12-18) Karaci A.; Ozkaraca O.; Acar E.; Demir A.In recent years, data mining and algorithm-based methods have been used frequently for the prediction and diagnosis of various diseases. Traumas, being one of the significant health problems in the world, are also one of the most important causes of death. This study aims to predict the presence of traumatic pathology in the lung of the patients admitted to the emergency department due to blunt thorax trauma with no X-ray and computed tomography (CT) history by machine learning methods. The models developed in the study using the 5-fold cross-validation method are most accurately classified by the ensemble (voting) classifier, whether there is a pathology in X-ray (mean accuracy = 0.82) and CT (mean accuracy = 0.83). The K-nearest neighbourhood method classifies patients with pathology in X-ray by 83% accuracy, while the ensemble (voting) method classifies non-pathology patients by 94% accuracy in models. Of CT results, random forest, ensemble (voting), and ensemble (stacking) classifiers are precisely classified by 96%, while those patients with pathology are classified perspicuously by 77%. As a result, a mathematical framework using data mining methods was proposed based on estimating the X-ray and CT results for the thorax graph scan.