Browsing by Author "Locatelli M."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Scopus Exploring the nutraceutical potential of dried pepper capsicum annuum L. on market from altino in abruzzo region(2020-05-01) Valle A.D.; Dimmito M.P.; Zengin G.; Pieretti S.; Mollica A.; Locatelli M.; Cichelli A.; Novellino E.; Ak G.; Yerlikaya S.; Baloglu M.C.; Altunoglu Y.C.; Stefanucci A.Sweet pepper is a typical type of Capsicum annuum from Abruzzo region, recognized as a traditional and local product, traditionally cultivated in the town of Altino (Abruzzo region, Italy). The aim of this study is to compare the sweet type of peppers from Altino with the hot pepper cultivated in the same area, in order to delineate their different phytochemical and biological profiles in vitro and in vivo. In this study, we elucidated their phytochemical composition, fatty acids composition and phenolic/flavonoid contents in extracts. Then antioxidant and enzyme inhibition assays were performed to evaluate their biological properties, together with in vitro cell assay and in vivo anti-inflammatory activity. Microwave (1000 mg/mL) extract of hot pepper showed the best inhibition value on in vitro cell growth assay; in fact, the number of survived cells was about 20% and 40% for microwave and Soxhlet extracts, respectively. In vivo anti-inflammatory assay revealed good activity for both species, which, when associated with in vitro cell inhibition results, could explain the protective effect on human prostatic hyperplasia.Scopus Investigations into the therapeutic potential of Asphodeline liburnica roots: In vitro and in silico biochemical and toxicological perspectives(2018-10-01) Locatelli M.; Yerlikaya S.; Baloglu M.; Zengin G.; Altunoglu Y.; Cacciagrano F.; Campestre C.; Mahomoodally M.; Mollica A.This study aims to establish the biological and chemical profile of Asphodeline liburnica (Scop.) Rchb. root. The antioxidant, antimicrobial, enzyme inhibitory, DNA protection, apoptotic DNA ladder fragmentation analysis, and anti-proliferative of A. liburnica were established using standard assays. In silico study was also performed to understand interactions between quantified anthraquinones and key enzymes of clinical relevance. Total phenolic and flavonoid contents were found to be 9.67 mgGAE/g and 1.48 mgRE/g extract, respectively. Chrysophanol was detected as a major anthraquinone. The extract exhibited radical scavenging ability against DPPH and ABTS with values of 13.23 and 66.99 mgTE/g extract, respectively. Good inhibitory activity against tyrosinase was recorded. In silico experiments showed that the anthraquinones were able to establish coordinative bonds with the copper atoms present in the enzymatic cavity of tyrosinase. MTT cell viability test on MDA-MB-231 cells showed that at 0.1 and 1 μg of extracts induced anti-proliferative effect. Apoptotic DNA fragmentation analysis indicated nuclear condensation resulting in DNA fragmentation, which exhibited apoptotic cell death in the presence of A. liburnica. This study has provided insights on the potential usage of A. liburnica which could open new avenues for research and stimulate future interest for the development of safe novel biopharmaceuticals.