Browsing by Author "Koksal, F."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Web of Science Sustainable one-part alkali activated slag/fly ash Geo-SIFCOM containing recycled sands: Mechanical, flexural, durability and microstructural properties(2023.01.01) Bayraktar, O.Y.; Bozkurt, T.H.; Benli, A.; Koksal, F.; Tuerkoglu, M.; Kaplan, G.Slurry Infiltrated Fiber Concrete or Composite (SIFCOM) is a unique form of steel-fiber-reinforced cement composite that possesses exceptional toughness and superior mechanical properties like compressive, shear, tensile, and flexural strengths. New supplies of fine aggregate are required since the construction industry is experiencing natural sand shortage. By thoroughly evaluating workability, mechanical properties, flexural toughness, durability and microstructure, this study demonstrates the potential of various recycled sands from different sources in the manufacture of sustainable slag/fly ash one-part alkali activated SIFCOM (Geo-SIFCOM). Recycled concrete, brick and ceramic sands were used as a substitute of 10, 25 and 50% by volume of silica sand. Steel fiber ratios of 5%, 10%, and 15% were used and exposed to heat curing for 6, 24 and 48 h at 80 degrees C. Taguchi method was used to investigate the optimum mixture. The results showed that 24 h heat-cured mixture containing 25% recycled concrete sand and 15% fiber (C25F15) had the largest compressive strengths of 68.49 MPa, 74.53 MPa and 80 MPa at 7, 28, and 91 days, respectively. All 6 h - cured mixtures containing 100% slag exhibited the best resistance to freeze-thaw and the mixtures heat cured for 6 h demonstrated the best compressive strength resistance to elevated temperature and F-T cycles regardless of FA content. The largest flexural toughness was also assessed for the mixture with 50% brick sand and 15% fiber (B50F15) heat-cured for 6 h. The mixture with 50% FA and 50%slag (50% ceramic sand and 15% fiber) exhibited the best high temperature resistance.Scopus Sustainable use of recycled fine aggregates in steel fiber-reinforced concrete: Fresh, flexural, mechanical and durability characteristics(Elsevier Ltd, 2024) Benli, A.; Bayraktar, O.Y.; Koksal, F.; Kaplan, G.Recycling construction waste is a viable tactic for advancing environmentally friendly building methods. With regard to concrete applications, the purpose of this research is to determine whether it is feasible to use recycled fine concrete aggregates (RFA) in lieu of natural fine aggregates (NFA) and to lessen the environmental impact of natural resource depletion and landfill space. A sustainable steel fiber-reinforced concrete was created by replacing NFA with RFA at the replacement ratio of 0 %, 50 %, and 100 %. Steel fibers (SF) were also included to mixes at three different contents of 0, 25 and 50 kg/m3 in order to further improve the qualities of the concretes. Thus, the aim of this paper is to appraise how the addition of FRA affects the mechanical, freeze-thaw, fresh, and non-destructive qualities of concrete. Nine concrete mixtures were cast, and tests were made to evaluate the following properties: flowability, fresh concrete unit weight, tensile and compressive strengths, elastic modulus, surface hardness, crack mouth opening displacement (CMOD), freeze and thaw performance, sulfate resistance and abrasion. Moreover, microstructure properties of concrete were also analyzed. The outcomes revealed that the mechanical, flexural, and durability performances of the concrete mixtures were enhanced by substituting RFA for NFA. The mixture with 50%RFA and 50 kg/m3 SF gained maximum compressive strength of 44.82 MPa which was 20.7 % greater than the reference mixture (RFA0F0). The mixture containing 100 % RFA and 25 kg/m3 SF had the highest elastic modulus and showed an approximately 33 % augmentation in elastic modulus as per the reference mixture. The mixture with 100%RFA and 50 kg/m3 SF exhibited the largest tensile strength indicating 60 % tensile strength enhancement as per the reference mixture. Combined use of RFA and 50 kg/m3 SF in concrete mixtures had the best abrasion and freeze-thaw resistance. SF incorporated concrete mixtures with RFA exhibited worse sulfate resistance. This study contributed significantly to global resource efficiency and environmental preservation by shedding light on the sustainable use of RFA and SF in the making of concrete. The results made important contributions to global research and promote environmentally friendly building methods all throughout the world.Web of Science Sustainable use of recycled fine aggregates in steel fiber-reinforced concrete: Fresh, flexural, mechanical and durability characteristics(2024.01.01) Benli, A.; Bayraktar, O.Y.; Koksal, F.; Kaplan, G.Recycling construction waste is a viable tactic for advancing environmentally friendly building methods. With regard to concrete applications, the purpose of this research is to determine whether it is feasible to use recycled fine concrete aggregates (RFA) in lieu of natural fine aggregates (NFA) and to lessen the environmental impact of natural resource depletion and landfill space. A sustainable steel fiber-reinforced concrete was created by replacing NFA with RFA at the replacement ratio of 0 %, 50 %, and 100 %. Steel fibers (SF) were also included to mixes at three different contents of 0, 25 and 50 kg/m(3) in order to further improve the qualities of the concretes. Thus, the aim of this paper is to appraise how the addition of FRA affects the mechanical, freeze-thaw, fresh, and non-destructive qualities of concrete. Nine concrete mixtures were cast, and tests were made to evaluate the following properties: flowability, fresh concrete unit weight, tensile and compressive strengths, elastic modulus, surface hardness, crack mouth opening displacement (CMOD), freeze and thaw performance, sulfate resistance and abrasion. Moreover, microstructure properties of concrete were also analyzed. The outcomes revealed that the mechanical, flexural, and durability performances of the concrete mixtures were enhanced by substituting RFA for NFA. The mixture with 50%RFA and 50 kg/m(3) SF gained maximum compressive strength of 44.82 MPa which was 20.7 % greater than the reference mixture (RFA0F0). The mixture containing 100 % RFA and 25 kg/m(3) SF had the highest elastic modulus and showed an approximately 33 % augmentation in elastic modulus as per the reference mixture. The mixture with 100%RFA and 50 kg/m(3) SF exhibited the largest tensile strength indicating 60 % tensile strength enhancement as per the reference mixture. Combined use of RFA and 50 kg/m(3) SF in concrete mixtures had the best abrasion and freeze-thaw resistance. SF incorporated concrete mixtures with RFA exhibited worse sulfate resistance. This study contributed significantly to global resource efficiency and environmental preservation by shedding light on the sustainable use of RFA and SF in the making of concrete. The results made important contributions to global research and promote environmentally friendly building methods all throughout the world.