Browsing by Author "Kokbudak Z."
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Scopus Corrosion behaviour of new oxo-pyrimidine derivatives on mild steel in acidic media: Experimental, surface characterization, theoretical, and Monte Carlo studies(2022-02-01) Ferigita K.S.M.; AlFalah M.G.K.; Saracoglu M.; Kokbudak Z.; Kaya S.; Alaghani M.O.A.; Kandemirli F.In this work, the effects of new compounds, namely, 1-amino-5-(4-methylbenzoyl)-4-(4-methylphenyl) pyrimidin-2 (1H)-thione (AMMP), and 1-(5-(4-Methoxybenzoyl)-4-(4-methoxyphenyl) 2-oxopyrimidin-1 (2H)-yl)-3-phenylthiourea (MMOPH) has been successfully investigated as a corrosion inhibitor for mild steel in a 1 M HCl solution. This investigation has been done by electrochemical techniques (potentiodynamic polarization, and electrochemical impedance spectroscopy), surface characterization (scanning electron microscopy with energy dispersive x-ray spectroscopy, and atomic force microscopy), and theoretical calculations (density function theory and Monte Carlo simulation). The electrochemical results showed that both compounds act as mixed-type inhibitors. However, MMOPH is more efficient than AMMP (95.9% compared with 84.1% at 5 × 10−4 M and an immersion time of 1 h). Additionally, the effect of immersion time on inhibitor efficiency was studied. The current density was reduced with the presence of inhibitors from 517.93 to 56.18 and 9.96 μA.cm−2 at 5 × 10−4 M and an immersion time of 1 h for AMMP and MMOPH, respectively. In both substances, the Langmuir isotherm system showed the best fit, with physisorption and chemisorption being the types of adsorption. The results of surface characterization indicated that both compounds can be adsorbed on mild steel surfaces to minimize corrosion. The obtained Monte Carlo simulation results suggest that the inhibitors are adsorbed vertically and the formation of a protective layer on the metal surface. The density function theory calculations for inhibitors found the protonated state is more reactive than the neutral state and agree with experimental results and follow the order MMOPH ˃ AMMP. The results showed that both compounds can be used as new corrosion inhibitors for mild steel in aggressive environments.Scopus Corrosion inhibition of mild steel in acidic media using new oxo-pyrimidine derivatives: Experimental and theoretical insights(2023-07-15) Ferigita K.S.M.; Saracoglu M.; AlFalah M.G.K.; Yilmazer M.I.; Kokbudak Z.; Kaya S.; Kandemirli F.Interesting results have been found for new compounds derived from oxo-pyrimidine to protect of mild steel (MS) in 1 M hydrochloric acid. These the compounds are 1-(5-(4-Methoxy-benzoyl)-4-(4‑methoxy-phenyl)-2-oxo-2H-pyrimidin-1-yl]-(4‑methoxy-phenyl)-urea (MMOM) and 1-(5-(4‑methoxy-benzoyl)-4-(4‑methoxy-phenyl)-2-oxo-2H-pyrimidin-1-yl)-3-(4-methlyphenyl)-thiourea (MMOPM). In this study, the impact of immersion time on inhibitor effectiveness was also investigated. Both substances function as mixed-type inhibitors, according to the electrochemical data. At 5 × 10−4 M and a 72-hour immersion duration, MMOM is more effective than MMOPM (98.42% vs. 94.49%). The Langmuir isotherm system provided the best match for both compounds, with chemisorption as the kind of adsorption. According to the findings of surface characterisation, both chemicals may be adsorbed on mild steel surfaces to reduce corrosion. Inhibitor simulations using density functional theory revealed that the protonated state is more reactive than the neutral state and coincides with experimental findings. The outcomes demonstrated that both compounds may be utilised as new mild steel corrosion inhibitors in harsh conditions and long-term immersion. The theoretical study, based on quantum chemical calculations of the compounds, performed by the DFT/BP86 method with a 6–311G(d,p) basis set by using Gaussian 09, Revision A.02 program, were also included to support experimental results. The various quantum chemical parameters such as EHOMO, ELUMO, chemical hardness and chemical softness, electronegativity of the investigated molecules were calculated, and their inhibition efficiency were discussed. The outcomes demonstrated that both compounds may be utilised as new mild steel corrosion inhibitors in harsh conditions and long-term immersion.Scopus Synthesis and DFT quantum chemical calculations of 2-oxopyrimidin-1(2H)-yl-urea and thiorea derivatives(2019-01-01) Saracoglu M.; Kokbudak Z.; Yalcin E.; Kandemirli F.Summary: A series of the new 2-oxopyrimidin-1(2H)-yl-urea (3a-c) and thiourea (4a-d) derivatives were synthesized by the reaction of arylisocyanates (2a-c) or arylisothiocyanates (2d-g) and the 1-amino-5-(4-methoxybenzoyl)-4-(4-methoxyphenyl)pyrimidin-2(1H)-one (1). The structures of the compounds 3a-c and 4a-d were characterized by elemental analysis, FT-IR, 1H and 13C-NMR spectroscopic techniques. In addition to experimental study in order to find molecular properties, quantum-chemical calculations of the synthesized compounds were carried out by using DFT/B3LYP method with basis set of the 6-311G(d,p). Quantum chemical features such as HOMO, LUMO, HOMO-LUMO energy gap, Ionization potential, chemical hardness, chemical softness, electronegativity, chemical potential, dipole moment etc. values for gas and solvent phase of neutral molecules were calculated and discussed.Scopus Synthesis and DFT quantum chemical calculations of novel pyrazolo[1,5-c]pyrimidin-7(1H)-one derivatives(2019-01-01) Saracoglu M.; Kokbudak Z.; Çimen Z.; Kandemirli F.Summary: In this study, a convenient procedure for the preparation of pyrazolo[1,5-c]pyrimidin- 7(1H)-one derivatives is described. The new pyrazolo[1,5-c]pyrimidin-7(1H)-one derivatives (2a, b) were synthesized from the cyclocondensation reaction of the compounds 1-amino-5-(4- methoxybenzoyl)-4-(4-methoxyphenyl)pyrimidin-2(1H)-one (1a) and 1-amino-5-(4-methylbenzoyl)- 4-(4-methylphenyl)pyrimidin-2(1H)-one (1b) with α-chloroacetone. The structures of the compounds (2a, b) were characterized by elemental analysis, FT-IR, 1H-NMR and 13C-NMR spectroscopic techniques. In addition to experimental study in order to find molecular properties, quantum-chemical calculations of the new pyrazolo[1,5-c]pyrimidin-7(1H)-one derivatives (2a, b) were carried out by using DFT/B3LYP method with the 6-311G(d,p) and 6-311++G(2d,2p) basic sets. Quantum chemical features such as HOMO, LUMO, HOMO-LUMO energy gap, chemical hardness, chemical softness, electronegativity, chemical potential, dipole moment etc. values for gas and solvent phase of neutral molecules were calculated and discussed.Scopus Synthesis and DFT Studies of pyrimidin-1(2H)-ylaminofumarate Derivatives(2020-10-01) Saracoglu M.; Kokbudak Z.; Yilmazer M.I.; Kandemirli F.Pyrimidine derivatives have biological and pharmacological properties. Therefore, in this study we focused on the synthesis various Pyrimidine derivatives to make noteworthy contributions this class of heterocyclic compounds. In the present study, the new compounds (4-6) were obtained by the reactions of 1-amino-5-benzoyl-4-phenylpyrimidin-2(1H)-one (1), 1-amino-5- (4-methylbenzoyl)-4-(4-methylphenyl)pyrimidin-2(1H)-one (2) and 1-amino-5-(4-methoxybenzoyl)- 4-(4-methoxyphenyl)pyrimidin-2(1H)-one (3) with dimethyl acetylenedicarboxylate. The structures of these compounds were proved by elemental analysis, FT-IR, 1H and 13C-NMR spectra. In addition to, quantum chemical calculations were made to find molecular properties of the pyrimidin-1(2H)- ylaminofumarate derivatives (4-6) by using DFT/B3LYP method with 6-311++G(2d,2p) basis set. Quantum chemical features such as EHOMO, ELUMO, energy gap, ionization potential, chemical hardness, chemical softness, electronegativity etc. values for gas and solvent phase of neutral molecules were calculated and discussed.