Browsing by Author "Kaya N."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Scopus Evaluation of superconducting features and gap coefficients for electron–phonon couplings properties of MgB2 with multi-walled carbon nanotube addition(2022-03-01) Kaya N.; Cavdar S.; Ozturk O.; Yildirim G.; Koralay H.In this study, the samples are prepared by solid state reaction method at different weight ratios (0–4%). The characterization of materials produced is conducted with the aid of powder X-ray diffraction (XRD), temperature-dependent electrical resistivities (ρ-T) and magnetization (M–H) measurements. Moreover, the change in the scattering/breaking of cooper-pairs in the small homogeneous clusters in the superconducting paths with the addition of multi-walled carbon nanotube is also examined by the energy gap coefficients. All the experimental findings show that the weight ratio of wt 2% is observed to be the optimum addition level. The XRD results indicate that the MgB2 material prepared by the optimum level crystallizes better in hexagonal symmetry. The critical current density is found to increase from 1.0 × 104 to 2.3 × 104A cm−2 depending on the increment in the magnetization values. On the other hand, the addition mechanism is noted to degrade slightly the general electrical features, critical transition temperatures, lattice cell constants and crystallite size of MgB2 material. Regardless, although the carbon nanotube addition seems to be negative effect on some general properties, the fundamental characteristic properties (the crystallinity with smoother crystallographic transition, magnetization values, coupling of adjacent layers, degree of broadening and especially formation of effective nucleation centers for the flux pinning ability) improve seriously at the optimum dopant level. Thus, the MgB2 prepared with the optimum carbon nanotube concentration can exhibit higher performance against the magnetic field and current in larger magnetic field strengths applied.Scopus Investigation of microhardness properties of the multi-walled carbon nanotube additive MgB2 structure by using the vickers method(2021-06-01) Kaya N.; Çavdar Ş.; Öztürk Ö.; Ada H.; Koralay H.In this study, the effect of multi-walled carbon nanotube doping to MgB2 compound on microhardness properties of MgB2 was investigated by using solid-state reaction method. The amount of multi-walled carbon nanotubes was chosen as 0, 1, 2, 3 and 4% by weight of total MgB2. All samples were obtained by sintered at 650 °C temperatures. The microhardness properties of the samples obtained were examined using the Vickers method. At the same time, the samples obtained were analyzed according to Meyer's Law, proportional sample resistance (PSR) model, Hays-Kendall (HK) approach and elastic/plastic deformation (EPD) model. Samples were found to exhibit indentation size effect (ISE) behavior. It was understood that the multi-walled carbon nanotubes doped to the samples made MgB2 softer by reducing the intergranular bonding of the MgB2 structure. In addition, it was found that the force applied to the samples caused both plastic and elastic deformation on the samples.