Browsing by Author "Hosseini-Bandegharaei, A."
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Web of Science Adsorption effectiveness and properties of an enriched activated carbon from residual biomass materials for non-polar benzene in gaseous environment(2024.01.01) Isinkaralar, K.; Turkyilmaz, A.; Hosseini-Bandegharaei, A.; Prakash, C.During the last century, benzene (C6H6) has been a highly studied substance, with some acute and chronic exposures leading directly to hematologic effects detected in humans. This work reports on preparing and examining biomass-derived activated carbons (HPACs) featuring high benzene adsorptive capacity. The fundamental goal of this paper is to propose a green approach for generating HPACs from Heracleum platytaenium Boiss. (Cow parsnip) as woody biomass using a low-cost approach. The characterization showed that chemical activation elicits more enhanced mesoporous structure, a higher degree of graphitization, and bulk porous structure with higher specific surface area and pore volume. To minimize the use of chemicals in the manufacture of high-performance HPACs, an essential pre-pyrolysis step was implemented prior to the chemical activation of biomass by NaOH. The samples were carbonized at different temperatures (500-900 degrees C) and named as HPAC500, HPAC600, HPAC700, HPAC800, and HPAC900. Considering micropore volume and total surface area, HPAC600 was superior, and maximum benzene adsorption capacities were: HPAC600 (127 mg/g) > HPAC700 (117 mg/g) > HPAC800 (101 mg/g) > HPAC500 (80 mg/g) > HPAC900 (59 mg/g) at selected conditions. Freundlich, Langmuir, and pseudo-first-order (PFO) and pseudo-second-order (PSO) models were used to mathematically describe HPAC600-vapor benzene sorption on HPAC600. The kinetic findings fitted PFO with optimal values of R-2 = 0.999, and the isotherm model adsorption fitted Freundlich model (R-2 = 1.000). The finding revealed that H. platytaenium is a useful material for producing adsorbents, and successful testing outcomes demonstrate that H. platytaenium products serve as a suitable benzene absorbent.Web of Science Adsorption of gas-styrene on activated carbon from agro-waste of Silybum marianum L. as a sustainable precursor(2023.01.01) Isinkaralar, K.; Mamyrbayeva, K.; Hosseini-Bandegharaei, A.Styrene adsorption has always been a research focus in the field of the gas environment due to its widespread usage. Removal of styrene using activated carbon has been verified because of the physicochemical properties of SMACs prepared by activating Silybum marianum L. waste powder. Hence, a series of novel SMACs were synthesized from NaOH, KOH, and H3PO4 ratio of 1:1-5 w/w and pyrolyzing at 450-950 degrees C and then washed activated carbon with HCl and NaOH. SMAC82, SMAC137, and the optimal AC (SMAC249) had the largest styrene adsorption capacity, 229, 170, and 136 mg/g for 700 ppm of styrene. Styrene is a typical model for volatile organic compounds (VOCs) in the atmosphere, and the findings demonstrated that it is rapidly absorbed into SMAC82, SMAC137, and SMAC249 through strong physical sorption. The calculated adsorption amounts showed that the styrene capture processes were feasible for adsorption within a suitable contact time and with excellent equilibrium adsorption capacities. Also, the results showed that the highest removal efficiency at 25 degrees C by the adsorption of SMAC82, SMAC137, and SMAC249 was 92%, 88%, and 86%, respectively. The efficiency results of SMAC82, SMAC137, and SMAC249 show that the styrene breakthrough at 25 degrees C compared to that of 35 and 45 degrees C increases approximately two times. Overall, this SMAC82 presented an excellent separation performance for styrene removal and can be a potential option for industrial applications of other VOCs in gas-phase, indicating good adsorption ability.Scopus Single and binary adsorption of paracetamol and diclofenac onto biochar produced from pepper stem: Which adsorption properties change in the binary system?(Elsevier B.V., 2024) Azri, N.; Chebbi, R.; Ouakouak, A.; Hecini, L.; Isinkaralar, K.; Fadel, A.; Bokov, D.O.; Prakash, C.; Hosseini-Bandegharaei, A.The importance of combating the contamination of water resources with emerging pollutants must be kept all the more in view by scientists, since such pollutants are harmful and pose challenges for traditional water treatment methods. The current study was designed to scrutinize the adsorption properties of a low-cost biochar for two pharmaceuticals in both single and binary systems. The work was focused on understanding how paracetamol (PARA) and diclofenac (DIC) co-adsorb, and it can serve as a beacon for similar studies, especially in modeling the adsorption processes of such systems. Using a low-cost biochar from pepper stem (PS) with a high surface area = 727.5 m2/g as adsorbent, experiments were carried out in both the single and binary systems to investigate the adsorption behavior of the mentioned pharmaceuticals. Results showed that, in the single system, the PS biochar demonstrates a slightly greater adsorption capability for both PARA and DIC, with a capacity of 354.66 and 256.10 mg/g, respectively, compared to its capacity for each pharmaceutical in the presence of the other in the solution. Interestingly, the effect of the presence of one of the pharmaceuticals on the thermodynamic parameters (ΔGº, ΔSº, and ΔHº) of the other was ignorable, and interactions such as hydrogen bonding, π-π, n-π, and anion-π interactions were at work for the adsorption processes, with different extends in each pharmaceutical-biochar case. On the other hand, the presence of one of the pharmaceuticals was effective on the kinetics of the adsorption process of the other and caused a decrease in its adsorption rate, especially in the initial stage of the process. Overall, in addition to the suitability of pepper stem biochar for PARA and DIC, results showed that the presence of one pharmaceutical is not influential on all the adsorption properties of the other, and the results can be exploited for studding similar systems.Web of Science Single and binary adsorption of paracetamol and diclofenac onto biochar produced from pepper stem: Which adsorption properties change in the binary system?(2024.01.01) Azri, N.; Chebbi, R.; Ouakouak, A.; Hecini, L.; Isinkaralar, K.; Fadel, A.; Bokov, D.O.; Prakash, C.; Hosseini-Bandegharaei, A.The importance of combating the contamination of water resources with emerging pollutants must be kept all the more in view by scientists, since such pollutants are harmful and pose challenges for traditional water treatment methods. The current study was designed to scrutinize the adsorption properties of a low-cost biochar for two pharmaceuticals in both single and binary systems. The work was focused on understanding how paracetamol (PARA) and diclofenac (DIC) co-adsorb, and it can serve as a beacon for similar studies, especially in modeling the adsorption processes of such systems. Using a low-cost biochar from pepper stem (PS) with a high surface area = 727.5 m2/g as adsorbent, experiments were carried out in both the single and binary systems to investigate the adsorption behavior of the mentioned pharmaceuticals. Results showed that, in the single system, the PS biochar demonstrates a slightly greater adsorption capability for both PARA and DIC, with a capacity of 354.66 and 256.10 mg/g, respectively, compared to its capacity for each pharmaceutical in the presence of the other in the solution. Interestingly, the effect of the presence of one of the pharmaceuticals on the thermodynamic parameters (Delta G degrees, Delta S degrees, and Delta H degrees) of the other was ignorable, and interactions such as hydrogen bonding, n-n, n-n, and anion-n interactions were at work for the adsorption processes, with different extends in each pharmaceutical-biochar case. On the other hand, the presence of one of the pharmaceuticals was effective on the kinetics of the adsorption process of the other and caused a decrease in its adsorption rate, especially in the initial stage of the process. Overall, in addition to the suitability of pepper stem biochar for PARA and DIC, results showed that the presence of one pharmaceutical is not influential on all the adsorption properties of the other, and the results can be exploited for studding similar systems.