Browsing by Author "Gul L.B."
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Scopus Influence of pH and ionic strength on the bulk and interfacial rheology and technofunctional properties of hazelnut meal protein isolate(2023-07-01) Gul O.; Gul L.B.; Baskıncı T.; Parlak M.E.; Saricaoglu F.T.The functional, bulk, and interfacial shear rheological properties of hazelnut protein isolate were studied at different pH values between 3.0 and 8.0 and ionic strength levels between 0.0 and 1.0 M. The results showed that pH significantly affected protein solubility, emulsion properties, water and oil holding capacities, foam stability, surface hydrophobicity, and free -SH groups. The highest surface hydrophobicity, free -SH groups, and better functional properties were observed at pH 8.0. Protein solubility also increased with increasing ionic strength up to 0.6 M. The emulsion and foam stability of hazelnut protein isolate showed similar changes with protein solubility. The flow behavior of hazelnut protein suspensions was found to be shear thinning with the highest consistency index at pH 3.0 and the lowest at pH 6.0, however, the ionic strength did not significantly affect the consistency coefficient but did cause a significant change in the flow behavior index, with the lowest value observed at 0.6 M. The best gel structure in hazelnut proteins was observed at pH 3.0 and 4.0. The addition of ions at 0.4 and 0.6 M concentrations resulted in an improved viscoelastic character. The hazelnut protein isolate was also found to form solid-like viscoelastic layers at both air-water and oil-water interfaces, with the interfacial adsorption behavior affected by both pH and ionic strength. Overall, these results suggest that pH and ionic strength have significant effects on the functional and rheological properties of hazelnut protein isolate, which may have the potential as an auxiliary substance in food systems.Scopus Optimization of cryoprotectant formulation to enhance the viability of Lactobacillus brevis ED25: Determination of storage stability and acidification kinetics in sourdough(2020-04-01) Gul L.B.; Gul O.; Yilmaz M.T.; Dertli E.; Con A.H.In this study, various kinds of cryoprotectant (skim milk, lactose, and sucrose) formulations were tested to enhance the survival of Lactobacillus brevis ED25 after freezing and freeze-drying. A Box–Behnken experimental design was used to optimize cryoprotective medium and the highest cell survival was observed with the 17.28% skim milk, 2.12% lactose, and 10% sucrose cryoprotectant as the optimum condition. The structural and physicochemical characteristics of freeze-dried powder were acceptable for application with regards to particle surface morphology, moisture and water activity (Aw), glass transition temperature (Tg), Fourier transform infrared spectra, X-ray structure, and also storage stability under the refrigeration and room temperature conditions. Accelerated storage test based on Arrhenius equation could be used to predict the freeze-dried bacterial shelf life but only with a certain degree of predictability for long-term storage. The acidification kinetics of fresh and stored culture in sourdough fermentation was also described on the basis of the Gompertz equation. Practical applications: Freezing and storage are crucial factors for the viability and acidification power of starter culture. Therefore, various types and concentrations of cryoprotectants have been used to preserve the microorganisms. L. brevis ED25 has been a good potential for the manufacture of industrial sourdoughs and this research has aimed to investigate long-term protective effects of optimum cryoprotectant formulations on the viability of bacteria and also determine the acidification power in sourdough. The results showed the potential value of freeze-dried L. brevis ED25 culture for commercialization.Scopus Optimization of fermentation conditions for sourdough by three different lactic acid bacteria using response surface methodology(2022-01-12) Gul L.B.; Gul O.; Con A.H.This study aimed to investigate optimal fermentation conditions for sourdough by freeze-dried Lactobacillus curvatus N19, Weissella cibaria N9 and Lactobacillus brevis ED25 isolated from Turkish sourdough previously. The central composite rotational design was applied to the optimization of fermentation parameters (temperature and time). The fermentation was carried out under a simulated sourdough system and biomass concentration, total acidity, and lactic and acetic acid formation were chosen as response variables. Results showed that the models developed for all variables were significant (p < 0.05) and there was no lack of fit in any of quantifications (p > 0.05), indicating the suitability for representing the relationship between variables and factors. While both of the independent parameters were effect the response, fermentation time was the most significant factor influencing the response. The validation experiments using the optimized condition showed a good agreement between the experimental and predicted values except the lactic and acetic acid formation for W. cibaria N9. In conclusion, freeze-dried L. curvatus N19 can be used as a starter culture to sourdough fermentation for bread industry due to optimum fermentation conditions (29oC temperature and 23h time).Scopus Potential Use of High Pressure Homogenized Hazelnut Beverage for a Functional Yoghurt-Like Product(2022-01-01) Gul O.; Atalar I.; Mortas M.; Saricaoglu F.T.; Besir A.; Gul L.B.; Yazici F.Hazelnut beverage is a plant-based beverage produced from hazelnut cake as a by-product obtained after cold press extraction. It has high nutritional value and a significant percentage of consumers show interest in it due to its health benefits. In this study, hazelnut beverage manufactured from by-products of hazelnut oil industry was incorporated into functional yoghurt production. Five formulations (ratio of 1/0, 3/1, 2/1, 1/1, 0/1, v/v, cow milk/hazelnut beverage) of yoghurt-like products were prepared to indicate the storage period of the samples and the analysis performed. For yoghurt production, hazelnut beverage and cows' milk were standardized to 14.5 g 100 g -1 with skimmed milk powder. The use of hazelnut beverage in yoghurt production negatively affected L. bulgaricus counts. Water holding capacity and viscosity values were improved by using hazelnut beverage. Increasing hazelnut beverage concentration led to an increase in the total phenolic compounds and antioxidant activity, malic acid levels and also unsaturated fatty acids, especially oleic and linoleic acid. Using the ratio of 3/1 was found the best in view of appearance, flavor and overall acceptability. Based on the structural, rheological and sensorial properties, this study could guide the dairy industry to use hazelnut beverage obtained from hazelnut cake.Scopus Storage stability and sourdough acidification kinetic of freeze-dried Lactobacillus curvatus N19 under optimized cryoprotectant formulation(2020-10-01) Gul L.B.; Con A.H.; Gul O.In this study, the response surface methodology was used to optimize the cryoprotective agent (skimmed milk powder, lactose and sucrose) formulation for enhancing the viability of Lactobacillus curvatus N19 during freeze-drying and storage stability of cells freeze-dried by using optimum formulation was evaluated. Our results showed that the most significant cryoprotective agent influencing the viability of L. curvatus N19 to freezing and freeze-drying was sucrose and skim milk, respectively. The optimal formulation of cryoprotective agents was 20 g/100 mL skim milk, 3.57 g/100 mL lactose and 10 g/100 mL sucrose. Using the optimum formulation during freeze-drying, the cell survival was found more than 98%. Under the optimal conditions, although only storage of the cells at 4 °C for 6 month retained the maximum stability (8.85 log cfu/g), the employed protectant matrix showed promising results at 25 °C (7.89 log cfu/g). The storage stability of cells under optimized conditions was predicted by accelerated storage test, which was demonstrated that the inactivation rate constant of the freeze-dried L. curvatus N19 powder was 9.74 × 10−6 1/d for 4 °C and 2.08 × 10−3 1/d for 25 °C. The loss of specific acidification activity after the storage at 4 and 25 °C was determined.Scopus Structural Characterization, Technofunctional and Rheological Properties of Sesame Proteins Treated by High-Intensity Ultrasound(2023-05-01) Gul O.; Saricaoglu F.T.; Atalar I.; Gul L.B.; Tornuk F.; Simsek S.Plant-derived proteins, such as those from sesame seeds, have the potential to be used as versatile food ingredients. End-use functionality can be further improved by high-intensity ultrasound treatments. The effects of high-intensity ultrasound on the properties of sesame protein isolates from cold-pressed sesame cake were evaluated. The SDS-PAGE demonstrated no significant changes in the molecular weight of proteins. Ultrasound treatments resulted in decreased particle size with a more uniform distribution, resulting in the exposure of hydrophobicity and free −SH groups and increased zeta potential. Although FTIR spectra of proteins were similar after ultrasonication, a partial increase in the intensity of the amide A band was observed. The ultrasound significantly (p < 0.05) affected the secondary structure of proteins. While optical micrographics revealed a dispersed structure with smaller particles after treatments, microstructural observations indicated more rough and irregular surfaces. Water solubility was improved to 80.73% in the sample subjected to 6 min of ultrasonication. Sesame protein solutions treated for 4 and 6 min exhibited viscoelastic structure (storage modulus (G′) > loss modulus (G′′)). In addition, the gelation temperature of proteins decreased to about 60–65 °C with increasing treatment time. Overall, ultrasound is a useful technique for the modification of sesame protein isolates.