Browsing by Author "Elmas M."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Scopus Effect of ketoprofen on intravenous pharmacokinetics of ganciclovir in chukar partridges (Alectoris chukar)(2022-01-01) Corum O.; Uney K.; Durna Corum D.; Atik O.; Coskun D.; Zhunushova A.; Elmas M.The aim of the study was to determine the effect of ketoprofen (2 mg/kg) on the intravenous pharmacokinetics of ganciclovir (10 mg/kg) in chukar partridges (Alectoris chukar). Eight clinically healthy partridges were used in the study. The study was performed in two periods using a cross-over design following a 15-day drug washout period. Plasma concentrations of ganciclovir were determined using the high-pressure liquid chromatography-ultraviolet detector and analyzed by non-compartmental analysis. The elimination half-life (t1/2ʎz), area under the concentration-time curve (AUC0-∞), total body clearance, and volume of distribution at steady state of ganciclovir were 1.63 h, 33.22 h*μg/ml, 0.30 L/h/kg, and 0.53 L/kg, respectively. Ketoprofen administration increased the t1/2ʎz and AUC0-∞ of ganciclovir by 78% and 108%, respectively, and while decreased ClT by 53%. The increased plasma concentration and prolonged elimination half-life of ganciclovir caused by ketoprofen may result in the prolonged duration of action and therapeutic effect of ganciclovir. However, the concomitant use requires determination of the pharmacokinetics of ketoprofen and the safety of both drugs.Scopus Effects of Temperature on the Pharmacokinetics, Tissue Residues, and Withdrawal Times of Doxycycline in Rainbow Trout (Oncorhynchus mykiss) following Oral Administration(2023-06-01) Corum O.; Uney K.; Terzi E.; Durna Corum D.; Coskun D.; Altan F.; Elmas M.The purpose of this study was to compare the pharmacokinetics, tissue residues, and withdrawal times of doxycycline after oral administration in rainbow trout reared at 10 and 17 °C. Fish received a 20 mg/kg oral dose of doxycycline after a single or 5-day administration. Six rainbow trout were used at each sampling time point for plasma and tissue samples, including liver, kidney, and muscle and skin. The doxycycline concentration in the samples was determined using high-performance liquid chromatography with ultraviolet detector. The pharmacokinetic data were evaluated by non-compartmental kinetic analysis. The WT 1.4 software program was used to estimate the withdrawal times. The increase of temperature from 10 to 17 °C shortened the elimination half-life from 41.72 to 28.87 h, increased the area under the concentration–time curve from 173.23 to 240.96 h * μg/mL, and increased the peak plasma concentration from 3.48 to 5.50 μg/mL. At 10 and 17 °C, the doxycycline concentration was obtained in liver > kidney > plasma > muscle and skin. According to the MRL values stated for muscle and skin in Europe and China (100 μg/kg) and in Japan (50 μg/kg), the withdrawal times of doxycycline at 10 and 17 °C were 35 and 31 days, respectively, for Europe and China and 43 and 35 days, respectively, for Japan. Since temperature significantly affected pharmacokinetic behavior and withdrawal times of doxycycline in rainbow trout, temperature-dependent dosing regimens and withdrawal times of doxycycline might be necessary.