Browsing by Author "Donmez H."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Scopus A cardioprotective role of Nerium oleander with the expression of hypoxia inducible factor 2A mRNA by increasing antioxidant enzymes in rat heart tissue(2018-01-01) Hitit M.; Corum O.; Corum D.D.; Donmez H.; Cetin G.; Dik B.; Er A.Background: Nerium oleander (NO) distillate is used to either protect heart cells against oxidative stress or reduce the risk of cardiovascular disease by regulating the production of reactive oxygen species. Hypoxia-inducible factors (HIFs) regulate cellular antioxidant defense mechanisms under hypoxic conditions in which heart cells survive; however, the key responsible mechanism of NO distillate for cardioprotection remains elusive. The objective of this study was to evaluate the effects on heart tissue at different time intervals after administering NO distillate intraperitoneally (IP) while considering the transcriptional regulation of HIFs and representative antioxidant enzymes. Materials, Methods & Results: The NO plant was chopped, and distillated water was added. The mixture was distilled, and the distillate separated and collected into tubes, after which it was lyophilized to obtain dry material. Twenty male Wistar albino rats (2-3 month-old, 250-300 g each) were used in the study. The rats were randomly divided into four groups. The control group (n = 5) received IP injections of saline; the remaining 15 rats received IP injections of a single dose of 7.5 mL NO distillate. The NO distillate injected rats were divided into three groups according to the time from injection to harvest the heart tissue samples. The tissues were collected at 0 h (control; n = 5), 2 h (group 2; n = 5), 4 h (group 3; n = 5), and 8 h (group 4; n = 5) after injection and under general anesthesia (60 mg/kg ketamine, IP + 10 mg/kg xylazine, IP). Quantitative polymerase chain reaction (qPCR) was used to assess the expression profiles of the genes of interest in the heart tissues. Hypoxanthine phosphoribosyltransferase was used as the reference gene. The expression of manganese superoxide dismutase (MnSOD) mRNA was in a steady state level between the control group and group 2 (P > 0.05); however, it significantly increased in group 3 and 4 compared with that in the control (P < 0.05). Expression of catalase (CAT) mRNA was significantly higher in group 2 than in the control group (P < 0.05) although it was lower in group 3 and 4 than in group 2 (P < 0.05); however, it appeared to be similar among the control group, group 3, and group 4 (P > 0.05). Copper (Cu) SOD mRNA was equally expressed in both the control group and group 2 (P > 0.05) but was lower in group 3 and 4 than in group 2 (P < 0.05). Expressions of HIF1A, HIF2A, and HIF3A mRNA were detected in the rat heart tissues in the control and 2, 4, and 8 h after administration of NO distillate. Expression of HIF1A mRNA was in a steady state and did not differ among groups 2, 3, and 4 (P > 0.05). Similarly, the expression of HIF2A mRNA did not change between the control group and group 2 (P > 0.05); however, it was higher in group 3 than in the control (P < 0.05) and tended to be higher in group 3 than in group 2 (P = 0.063). HIF3A mRNA expression did not change significantly in the heart tissue of any of the groups (P > 0.05). Discussion: The present study using rats determined that MnSOD, CAT, CuSOD, HIF1A, HIF2A, and HIF3A mRNA are expressed in the heart tissues after administration of NO distillate. The increased expression of HIF2A mRNA after 4 h in accordance with a rise in CAT mRNA after 2 h, and MnSOD mRNA after 4 and 8 h might confirm the role of HIF2A mRNA in oxidative stress defense by regulating antioxidant enzymes; consequently, this study may expand our understanding of uses of NO distillate with respect to molecular pathways.Scopus Alcoholic extract of tarantula cubensis induces apoptosis in MCF-7 cell line(2017-01-01) Ayse E.R.; Corum O.; Corum D.; Hitit M.; Donmez H.; Guzeloglu A.Tarantula cubensis Alcoholic Extract (TCAE) is a homeopathic agent used for treating many disorders. This study aimed to define the effects of TCAE on the breast carcinoma cell line (MCF-7). After various concentrations (10, 20, 40, 80 and 160 µl/ml) of TCAE were applied to MCF-7 cells and the human embryonic kidney cell line (HEK293), the cells were incubated for 1, 3, 6, 9, 12, 24 and 48 h, followed by analysis by MTT assays. According to the results of the MTT assays, cells treated with 20 or 40 µl/ml TCAE for 6 h were applied to apoptosis analysis by flow cytometry. Secreted levels of tumor necrosis factor alpha (TNFα), interleukin (IL)-1β, IL-6, IL-10, Interferon-γ (IFNγ), Transforming Growth Factor-β (TGFβ), and Nuclear Factor-kappa B (NF-κB) were measured using ELISAs. TNFα and TGFβ levels increased while IL-6 and IL-10 levels fluctuated in MCF-7 cells. In conclusion, our study suggests that TCAE may change the normal cancer physiology and lead to cell death by activating apoptosis in MCF-7 cells.Scopus The effect of medicarpin on PTEN/AKT signal pathway in head and neck squamous cell carcinoma(2022-01-01) Yiǧin A.; Donmez H.; Hitit M.; Seven S.; Eser N.; Kurar E.; Seven M.Background/Aim: We aimed to investigate the in vitro modulating effects of medicarpin on the PI3K/AKT signal pathway gene expressions in head and neck squamous cell carcinoma (HNSCC). Materials and Methods: The effect of medicarpin on PTEN and other associated genes in the PTEN/AKT signal pathway was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, real-Time quantitative polymerase chain reaction, and Western blot analysis in the SCCL-MT1 (HNSCC) and control (HEK-293) cell lines. Results: The IC50 dose was 80 μM as a result of medicarpin treatment on HNSCC cells (P = 0.0006). It was found that PTEN and AKT gene expressions increased after the medicarpin administration while PDK1 gene expression was decreased in SCCL-MT1 cells (P = 0.0002, P = 0.0003, and P = 0.05, respectively). Protein expression results showed that medicarpin-Treated cells significantly increased in pAKT (P = 0.024), pPTEN (P = 0.032), and decreased pPDK1 (P = 0.059) in SCCL-MT1. Conclusions: Our data show that medicarpin modulates HNSCC cells by increasing the PTEN and decreasing PDK1 expressions. PDK1 gene expression effects mTOR pathway which may increase AKT gene. Our study suggests that both medicarpin extracts combination with the HNSCC drug may be more effective in cancer treatment. Future prospective studies that integrate molecular and pharmacogenetic studies are crucial for revealing the mechanism and preventive medical efforts.