Browsing by Author "Dincer, Busra"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Pubmed Antipsychotics Induced Reproductive Toxicity by Stimulating Oxidative Stress: A Comparative In Vivo and In Silico Study.(2023-04-02T00:00:00Z) Dincer, Busra; Yazici, Ahmet Bulent; Cinar, Irfan; Toktay, Erdem; Selli, Jale; Cadirci, Elif; Bayraktutan, Zafer; Yazici, EsraThe pathophysiological mechanism behind the link between antipsychotic drugs and sexual dysfunction is still unknown. The goal of this research is to compare the potential effects of antipsychotics on the male reproductive system. Fifty rats were randomly assigned into the five groups indicated: Control, Haloperidol, Risperidone, Quetiapine and Aripiprazole. Sperm parameters were significantly impaired in all antipsychotics-treated groups. Haloperidol and Risperidone significantly decreased the level of testosterone. All antipsychotics had significantly reduced inhibin B level. A significant reduction was observed in SOD activity in all antipsychotics-treated groups. While GSH levels diminished, MDA levels were rising in the Haloperidol and Risperidone groups. Also, the GSH level was significantly elevated in the Quetiapine and Aripiprazole groups. By causing oxidative stress and altering hormone levels, Haloperidol and Risperidone are damaging to male reproductivity. This study represents useful starting point for exploring further aspects of the underlying mechanisms reproductive toxicity of antipsychotics.Pubmed Does daily fasting shielding kidney on hyperglycemia-related inflammatory cytokine via TNF-α, NLRP3, TGF-β1 and VCAM-1 mRNA expression.(2021-11-01T00:00:00Z) Bilen, Arzu; Calik, Ilknur; Yayla, Muhammed; Dincer, Busra; Tavaci, Taha; Cinar, Irfan; Bilen, Habip; Cadirci, Elif; Halici, Zekai; Mercantepe, FilizThis study aimed to investigate the effects of blood glucose control and the kidneys' functions, depending on fasting, in the streptozotocin-induced diabetes model in rats via TNF-α, NLRP-3, TGF-β1 and VCAM-1 mRNA expression in the present study. 32 Wistar albino rats were allocated randomly into four main groups; H (Healthy, n = 6), HF (Healthy fasting, n = 6), D (Diabetes, n = 10), DF (Diabetes and fasting, n = 10). Blood glucose and HbA1c levels significantly increased in the D group compared to the healthy ones (p < 0.05). However, the fasting period significantly improved blood glucose and HbA1c levels 14 days after STZ induced diabetes in rats compared to the D group. Similar findings we obtained for serum (BUN-creatinine) and urine samples (creatinine and urea levels). STZ induced high glucose levels significantly up-regulated TNF-α, NLRP-3, TGF-β1 and VCAM-1 mRNA expression and fasting significantly decreased these parameters when compared to diabetic rats. Histopathological staining also demonstrated the protective effects of fasting on diabetic kidney tissue. In conclusion, intermittent fasting regulated blood glucose level as well as decreasing harmful effects of diabetes on kidney tissue. The fasting period significantly decreased the hyperglycemia-related inflammatory cytokine damage on kidneys and also reduced apoptosis in favor of living organisms.Pubmed Evaluation of the protective effects of gossypin for ischemia/reperfusion injury in ovary tissue.(2022-03-01T00:00:00Z) Dincer, Busra; Cinar, Irfan; Yayla, Muhammed; Toktay, ErdemOvarian ischemia-reperfusion (I/R) injury is a serious gynecological condition that affects women of reproductive age and reduces ovarian reserve. Management of I/R injury with detorsion causes reperfusion damage, in which oxidative stress plays a central role. This study aimed to investigate whether the gossypin (GOS) with antioxidant properties, a flavonoid, has beneficial effects on the biochemical, molecular, and histopathological aspects of ovarian I/R injury.Pubmed Gossypin mitigates oxidative damage by downregulating the molecular signaling pathway in oleic acid-induced acute lung injury.(2023-09-11) Dincer, Busra; Cinar, Irfan; Erol, Huseyin Serkan; Demirci, Beste; Terzi, FundaOne of the leading causes of acute lung injury, which is linked to a high death rate, is pulmonary fat embolism. Increases in proinflammatory cytokines and the production of free radicals are related to the pathophysiology of acute lung injury. Antioxidants that scavenge free radicals play a protective role against acute lung injury. Gossypin has been proven to have antioxidant, antimicrobial, and anti-inflammatory properties. In this study, we compared the role of Gossypin with the therapeutically used drug Dexamethasone in the acute lung injury model caused by oleic acid in rats. Thirty rats were divided into five groups; Sham, Oleic acid model, Oleic acid+Dexamethasone (0.1 mg/kg), Oleic acid+Gossypin (10 and 20 mg/kg). Two hours after pretreatment with Dexamethasone or Gossypin, the acute lung injury model was created by injecting 1 g/kg oleic acid into the femoral vein. Three hours following the oleic acid injection, rats were decapitated. Lung tissues were extracted for histological, immunohistochemical, biochemical, PCR, and SEM imaging assessment. The oleic acid injection caused an increase in lipid peroxidation and catalase activity, pathological changes in lung tissue, decreased superoxide dismutase activity, and glutathione level, and increased TNF-α, IL-1β, IL-6, and IL-8 expression. However, these changes were attenuated after treatment with Gossypin and Dexamethasone. By reducing the expression of proinflammatory cytokines and attenuating oxidative stress, Gossypin pretreatment provides a new target that is equally effective as dexamethasone in the treatment of oleic acid-induced acute lung injury.Pubmed Unlocking Synergistic Potential: Agomelatine Enhances the Chemotherapeutic Effect of Paclitaxel in Breast Cancer Cell Through MT1 Melatonin Receptors and ER-alpha Axis.(2023-09-10) Dincer, Busra; Yildiztekin, Gizem; Cinar, IrfanThis study investigates the potential of agomelatine (AGO), a synthetic melatoninergic drug, in combination with paclitaxel (PTX) for the treatment of breast cancer. The effects of AGO, PTX and melatonin (MTN) on breast cancer cell viability were investigated, focusing on the role of MT1 receptors. Cell viability and gene expression were analyzed in MCF-7 and MDA-MB-231 breast cancer cell experiments. The results show that AGO has cytotoxic effects on breast cancer cells similar to MTN. Combining AGO and MTN with PTX showed synergistic effects in MCF-7 cells. The study also reveals differences in the molecular mechanisms of breast cancer between estrogen-positive MCF-7 cells and estrogen-negative MDA-MB-231 cells. Combination with AGO and PTX affects apoptosis-associated proteins in both cell types. The findings suggest that AGO, combined with PTX, may be a promising adjuvant therapy for breast cancer and highlight the importance of MTN receptors in its mechanism of action.