Browsing by Author "Chen C."
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Scopus Cyclic behavior of self-tapping screwed laminated Bamboo Lumber connections subjected to cycle loadings(2019-01-01) Chen C.; Ye Z.; Yu X.; Tor O.; Zhang J.Self-tapping screws are commonly used to connect critical structural components, such as legs to rails in chair construction, using laminated bamboo lumber (LBL) materials. The loosening of a connection is commonly seen in self-tapping screwed LBL connections before actual breakage of connections happens. The loosening of connections, especially those associated with chair legs, can significantly affect chair stability. Current furniture performance test standards have not address this issue, i.e., the minor loosening of a connection is not treated as a failure in the current standard because of the lack of better understanding the load-rotation-time behavior of various connections subjected to the cyclical loads. The effects of cyclic loading magnitude and orientation on the load-rotation-time behavior of L-shaped, end-to-side, single self-tapping screwed LBL connections were investigated. Results indicated that the Burger and Kelvin models could be used to describe the cyclic and recovery behavior of studied connections. Increasing the cyclic loading magnitude resulted in a decreasing trend for all viscoelastic constants. The most significant decrease in all viscoelastic constants occurred when the cyclic loading magnitude applied to connections increased from 50 to 60% of its corresponding ultimate static resistance loads.Scopus Effects of Pilot Hole Diameter and Depth on Screw Driving Torques in Plywood(2020-01-01) Tor O.; Birinci E.; Hu L.; Chen C.Factors affecting screw driving torques in plywood were investigated in this work. The factors were number of layers (7 and 9), pilot hole diameter (3.0 and 3.5 mm), pilot hole depth (60 and 80% of the thickness of specimen), and thickness of the metal plate (7.5 and 10 mm). Screw driving torques were studied in oriented strandboard, medium-density fiberboard, particleboard, and some wood-plastic composites. There is no such information about screw driving torques in plywood (PW). Therefore, this study focused on the plywood made of aspen (Populus tremula L.). The mean seating torque (SET) values ranged from 0.31 to 0.69 N∙m, whereas mean stripping torque (STT) values ranged from 0.50 to 4.7 N∙m. The ratios of STT/SET were between 2 and 5 in PW with seven layers, whereas the ratios were between 4 and 7 in PW with nine layers. The results indicated that the four main effects of SET and STT were statistically significant with p-values of ˂ 0.0001.Scopus Static lateral load capacity of extruded wood-plastic composite-to-metal single-bolt connections, considering failure at the ends(2019-01-01) Chen C.; Kuang F.; Tor O.; Quin F.; Xiong Z.; Zhang J.The effect of the end distance was studied relative to the static ultimate lateral load capacity of a single-shear unconstrained wood-plastic-composite-to-metal single-bolt connection (SUWSC). Equations estimated the static ultimate lateral loads of the SUWSCs that failed during the end tear-out, splitting, and yield modes and were obtained using stress concentration factor regression- and mechanics-based approaches. The experimental results showed that the stress concentration factor was a linear function of the end-distance to bolt-diameter ratio for the SUWSCs that failed during end tear-out and splitting modes. The static ultimate lateral loads of the SUWSCs that failed during the yield modes were estimated using a mechanics-based equation. The minimum end distance for the SUWSCs that failed without end fracture (i.e., only with yield mode) was 25.4 mm, which was four times larger than the bolt diameter.Scopus Ultimate direct withdrawal loads of low shear strength wooden dowels in selected wood species for furniture applications(2019-01-01) Chen C.; Xing Y.; Xu W.; Tor O.; Quin F.; Zhang J.The wood dowel pin is one of the common fasteners for connecting structural members in wooden furniture frame construction, such as chairs. The effects of dowel penetration depth, shear strengths of connection member and dowel materials, dowel surface texture, and member grain orientation on ultimate direct withdrawal loads of single dowels withdrawn from wooden materials were investigated. The main findings were that the connections using dowels and main members with low shear strength properties achieved the same ultimate direct withdrawal loads with connections using the materials with higher shear strength properties for dowels and main members. Additionally, the existing empirical equations, including shear strength properties for both dowel and main member materials used to construct dowel connections, tended to remarkably underestimate the ultimate direct withdrawal loads of the evaluated dowel connections withdrawn from the end and side grains of the tested wood species. The connection main members in this study when these two shear strength values were added together was less than 25 MPa. Both estimation expressions were modified to consider the lower shear strength effort on ultimate direct withdrawal loads of dowels evaluated in this experiment.