Browsing by Author "Cadirci, Elif"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Pubmed 5-HT7 receptors as a new target for prostate cancer physiopathology and treatment: an experimental study on PC-3 cells and FFPE tissues.(2021-06-01T00:00:00Z) Cinar, Irfan; Sirin, Busra; Halici, Zekai; Palabiyik-Yucelik, Saziye Sezin; Akpinar, Erol; Cadirci, ElifProstate cancer (PCa) is one of the most common types of cancer seen among men worldwide. Previous studies have demonstrated that serotonin regulates cell proliferation, migration, and invasion in vitro; the presence of 5-HT receptors in cancer cells; and the role of serotonin in tumor development. The most recently discovered of these receptors is 5-HT7 but also least characterized receptors of serotonin. The aim of this study is to investigate the existence and possible role of 5-HT7 receptors in healthy and cancerous prostate tissues and also investigate effects of receptor agonists and antagonists on PC-3 cells to evaluate potential therapeutic effects. PC-3 cells were cultured and effects of 5-HT7 receptor agonist (LP-44) and antagonist (SB-269970) were evaluated on these cells. After proliferation analyses, relative expression of apoptotic markers and 5-HT7 receptor mRNA expression levels were determined through real-time PCR. Annexin V-FITC/PI double staining and Hoechst 33258 staining assay methods were applied to determine apoptosis. Additional PCR studies were performed on healthy and cancerous prostate tissue to see existence of receptors in human samples. The viability of PC-3 cells was decreased by SB-269970 after 48 and 72 h of incubation. However, LP-44 increased PC-3 cell proliferation at all time points. In 10 M SB-269970 treated PC-3 cells, there was significant increase in the expression of CAS-3 (4-fold), CAS-9 (2.5-fold), BAX (1.9-fold), and Tp-53 (4.8-fold) gene mRNA levels when compared to non-treated control group. Conversely, there was a significant decrease in NF-κB (2.9-fold) and 5-HT7 receptor (3.6-fold) mRNA expression in cells treated with SB-269970 when compared to control. SB-269970 that antagonized 5-HT7 receptors also induced apoptosis in Annexin V-FITC/PI double staining assay and Hoechst 33258 staining assays when compared with other groups. In human samples, 5-HT7 receptor mRNA expression was approximately 200-fold higher than that of heathy ones. In this study, for the first time, the 5-HT7 receptor antagonist SB-269970 has been shown to inhibit proliferation in PC-3 cells and to be associated with an apoptosis-inducing effect. These results suggest blocking 5-HT7 receptors can be a novel therapeutic target for the treatment of prostate cancer.Pubmed Antipsychotics Induced Reproductive Toxicity by Stimulating Oxidative Stress: A Comparative In Vivo and In Silico Study.(2023-04-02T00:00:00Z) Dincer, Busra; Yazici, Ahmet Bulent; Cinar, Irfan; Toktay, Erdem; Selli, Jale; Cadirci, Elif; Bayraktutan, Zafer; Yazici, EsraThe pathophysiological mechanism behind the link between antipsychotic drugs and sexual dysfunction is still unknown. The goal of this research is to compare the potential effects of antipsychotics on the male reproductive system. Fifty rats were randomly assigned into the five groups indicated: Control, Haloperidol, Risperidone, Quetiapine and Aripiprazole. Sperm parameters were significantly impaired in all antipsychotics-treated groups. Haloperidol and Risperidone significantly decreased the level of testosterone. All antipsychotics had significantly reduced inhibin B level. A significant reduction was observed in SOD activity in all antipsychotics-treated groups. While GSH levels diminished, MDA levels were rising in the Haloperidol and Risperidone groups. Also, the GSH level was significantly elevated in the Quetiapine and Aripiprazole groups. By causing oxidative stress and altering hormone levels, Haloperidol and Risperidone are damaging to male reproductivity. This study represents useful starting point for exploring further aspects of the underlying mechanisms reproductive toxicity of antipsychotics.Pubmed Does daily fasting shielding kidney on hyperglycemia-related inflammatory cytokine via TNF-α, NLRP3, TGF-β1 and VCAM-1 mRNA expression.(2021-11-01T00:00:00Z) Bilen, Arzu; Calik, Ilknur; Yayla, Muhammed; Dincer, Busra; Tavaci, Taha; Cinar, Irfan; Bilen, Habip; Cadirci, Elif; Halici, Zekai; Mercantepe, FilizThis study aimed to investigate the effects of blood glucose control and the kidneys' functions, depending on fasting, in the streptozotocin-induced diabetes model in rats via TNF-α, NLRP-3, TGF-β1 and VCAM-1 mRNA expression in the present study. 32 Wistar albino rats were allocated randomly into four main groups; H (Healthy, n = 6), HF (Healthy fasting, n = 6), D (Diabetes, n = 10), DF (Diabetes and fasting, n = 10). Blood glucose and HbA1c levels significantly increased in the D group compared to the healthy ones (p < 0.05). However, the fasting period significantly improved blood glucose and HbA1c levels 14 days after STZ induced diabetes in rats compared to the D group. Similar findings we obtained for serum (BUN-creatinine) and urine samples (creatinine and urea levels). STZ induced high glucose levels significantly up-regulated TNF-α, NLRP-3, TGF-β1 and VCAM-1 mRNA expression and fasting significantly decreased these parameters when compared to diabetic rats. Histopathological staining also demonstrated the protective effects of fasting on diabetic kidney tissue. In conclusion, intermittent fasting regulated blood glucose level as well as decreasing harmful effects of diabetes on kidney tissue. The fasting period significantly decreased the hyperglycemia-related inflammatory cytokine damage on kidneys and also reduced apoptosis in favor of living organisms.