Browsing by Author "Ali, B.M."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Web of Science Nonlinear vibration analysis of fluid-conveying cantilever graphene platelet reinforced pipe(2024.01.01) Ali, B.M.; Akkas, M.; Hançerliogullari, A.; Bohlooli, N.This paper is motivated by the lack of studies relating to vibration and nonlinear resonance of fluid -conveying cantilever porous GPLR pipes with fractional viscoelastic model resting on nonlinear foundations. A dynamical model of cantilever porous Graphene Platelet Reinforced (GPLR) pipes conveying fluid and resting on nonlinear foundation is proposed, and the vibration, natural frequencies and primary resonant of such system are explored. The pipe body is considered to be composed of GPLR viscoelastic polymeric pipe with porosity in which Halpin -Tsai scheme in conjunction with fractional viscoelastic model is used to govern the construction relation of the nanocomposite pipe. Three different porosity distributions through the pipe thickness are introduced. The harmonic concentrated force is also applied on pipe and excitation frequency is close to the first natural frequency. The governing equation for transverse motion of the pipe is derived by the Hamilton principle and then discretized by the Galerkin procedure. In order to obtain the frequency -response equation, the differential equation is solved with the assumption of small displacement, damping coefficient, and excitation amplitude by the multiple scale method. A parametric sensitivity analysis is carried out to reveal the influence of different parameters, such as nanocomposite pipe properties, fluid velocity and nonlinear viscoelastic foundation coefficients, on the primary resonance and linear natural frequency. Results indicate that the GPLs weight fraction porosity coefficient, fractional derivative order and the retardation time have substantial influences on the dynamic response of the system.Web of Science The Green Cooling Factor: Eco-Innovative Heating, Ventilation, and Air Conditioning Solutions in Building Design(2024.01.01) Ali, B.M.; Akkas, M.This research investigates the compatibility of conventional air conditioning with the principles of green building, highlighting the need for systems that enhance indoor comfort while aligning with environmental sustainability. Though proficient in regulating indoor temperatures, conventional cooling systems encounter several issues when incorporated into green buildings. These include energy waste, high running costs, and misalignment with eco-friendly practices, which may also lead to detrimental environmental effects and potentially reduce occupant comfort, particularly in retrofit situations. Given the emphasis on sustainability and energy conservation in green buildings, there is a pressing demand for heating, ventilation, and air conditioning (HVAC) solutions that support these goals. This study emphasises the critical need to reconsider traditional HVAC strategies in the face of green building advances. It advocates for the adoption of innovative HVAC technologies designed for eco-efficiency and enhanced comfort. These technologies should integrate seamlessly with sustainable construction, use greener refrigerants, and uphold environmental integrity, driving progress towards a sustainable and occupant-friendly built environment.