Browsing by Author "Alharthi S."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Scopus Adsorption behavior and corrosion inhibitive characteristics of newly synthesized cyano-benzylidene xanthenes on copper/sodium hydroxide interface: Electrochemical, X-ray photoelectron spectroscopy and theoretical studies(2020-11-15) Khalifa M.E.; El Azab I.H.; Gobouri A.A.; Mersal G.A.M.; Alharthi S.; Saracoglu M.; Kandemirli F.; Ryl J.; Amin M.A.Elegant process for synthesis of 3-(7H-dibenzo[c,h]xanthen-7-yl)benzaldehyde (3), as new starting material to create a set of novel xanthene analogues, 2-(3-(7H-dibenzo[c,h]xanthen-7-yl)benzylidene)malononitrile (4), 3-(3-(7H-dibenzo[c,h]xanthen-7-yl)phenyl)-2-cyanoacrylic acid (5), and Ethyl-3-(3-(7H-dibenzo[c,h]xanthen-7-yl)phenyl)-2-cyanoacrylate (6), was achieved starting with available materials under mild conditions. Various concentrations (ca. 0.1–1.0 mM) of the synthesized cyano-benzylidene xanthene derivatives, namely compounds 3–6, were tested as inhibitors to control copper corrosion in alkaline solutions employing polarization and electrochemical impedance spectroscopy (EIS) measurements. Results revealed that the four studied xanthenes derivatives served as efficient (mixed-type) inhibitors. The inhibition efficiency increased with increase in inhibitor concentration.The inhibition performance of studied compounds varied according to their chemical structures. The best inhibitor, compound (5), achieved a maximum inhibition efficiency of 98.7% (calculated from corrosion current densities) and ~ 95% (estimated from charge-transfer resistance values) at a concentration of 1.0 mM. The morphology of the corroded and inhibited copper surfaces was studied by scanning electron microscopy (SEM). The adsorption of the inhibitor molecules was confirmed by high-resolution X-ray photoelectron spectroscopy (XPS) profiles. XPS data were used to compare the inhibition efficiencies exhibited by studied compounds. The oxidation rate of the Cu surface was found to be frivolous, referring to high inhibition efficiency, only in the presence of inhibitor (5), and Cu0 share is 87% of all copper components. The shares of Cu0 were significantly reduced to 43%, 26% and 20% for inhibitors (3), (4) and (6), respectively. These findings go parallel with the results obtained from electrochemical measurements. The quantum-chemical calculations of the investigated molecules were performed to support electrochemical findings, and their correlations with the inhibition efficiency of the synthesized compounds were discussed.Scopus Electrochemical, theoretical and surface physicochemical studies of the alkaline copper corrosion inhibition by newly synthesized molecular complexes of benzenediamine and tetraamine with π acceptor(2020-12-15) Ibrahim M.M.; Mersal G.A.M.; Fallatah A.M.; Saracoglu M.; Kandemirli F.; Alharthi S.; Szunerits S.; Boukherroub R.; Ryl J.; Amin M.A.Two charge transfer complexes, namely [(BDAH)+(PA−)] CT1 [(BTAH)2+(PA−)2] and CT2 (BDAH = 1,2-benzenediamine, BTAH = 1,2,4,5-benzenetetramine, and PA− = 2,4,6-trinitrophenolate), were synthesized and fully characterized using various spectroscopic techniques. CT1 and CT2 were tested as inhibitors to effectively control the uniform and anodic corrosion processes of copper in an alkaline electrolyte (1.0 M KOH) using various electrochemical techniques. As a reference point, results were compared with the potassium salt of the π-acceptor potassium 2,4,6-trinitrophenolate (designated here as PA−K+). The highest inhibition efficiency (97%) was recorded for inhibitor CT2 at a concentration of 1.0 mM. The inhibition mechanism was discussed based on scanning electron microscopy and X-ray photoelectron spectroscopy results of the corroded and inhibited Cu surfaces. A theoretical study, based on quantum-chemical calculations of the synthesized compounds, performed by the DFT/B3LYP method with a 6-311++G(2d,2p) basis set by using Gaussian 09, Revision A.02 program, was also included to support experimental findings. The various quantum chemical parameters such as EHOMO, ELUMO, chemical hardness, and chemical softness of the investigated molecules were calculated, and their correlation with the inhibition efficiency of the synthesized compounds was discussed.Scopus Synthesis and characterization of new 1,3,4-thiadiazole derivatives: study of their antibacterial activity and CT-DNA binding(2022-10-17) Sayiner H.S.; Yilmazer M.I.; Abdelsalam A.T.; Ganim M.A.; Baloglu C.; Altunoglu Y.C.; Gür M.; Saracoglu M.; Attia M.S.; Mahmoud S.A.; Mohamed E.H.; Boukherroub R.; Al-Shaalan N.H.; Alharthi S.; Kandemirli F.; Amin M.A.1,3,4-Thiadiazole molecules (1-4) were synthesized by the reaction of phenylthiosemicarbazide and methoxy cinnamic acid molecules in the presence of phosphorus oxychloride, and characterized with UV, FT-IR, 13C-NMR, and 1H-NMR methods. DFT calculations (b3lyp/6-311++G(d,p)) were performed to investigate the structures' geometry and physiochemical properties. Their antibacterial activity was screened for various bacteria strains such as Enterobacter aerogenes, Escherichia coli ATCC 13048, Salmonella kentucky, Pseudomonas aeruginosa, Klebsiella pneumoniae, Proteus and Gram positive such as Staphylococcus aureus ATCC 25923, Listeria monocytogenes ATCC 7644, Enterococcus faecium, Enterococcus durans, Staphylococcus aureus ATCC, Serratia marcescens, Staphylococcus hominis, Staphylococcus epidermidis, alfa Streptococcus haemolyticus, Enterococcus faecium and found to have an inhibitory effect on Klebsiella pneumoniae and Staphylococcus hominis, while molecules 1, 3 and 4 had an inhibitory effect on Staphylococcus epidermidis and alpha Streptococcus haemolyticus. The experimental results were supported by the docking study using the Kinase ThiM from Klebsiella pneumoniae. All the investigated compounds showed an inhibitory effect for the Staphylococcus epidermidis protein. In addition, the mechanism of the 1-4 molecule interaction with calf thymus-DNA (CT-DNA) was investigated by UV-vis spectroscopic methods.