Browsing by Author "Akyol, Kemal"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Pubmed Automated detection of Covid-19 disease using deep fused features from chest radiography images.(2021-08-01T00:00:00Z) Uçar, Emine; Atila, Ümit; Uçar, Murat; Akyol, KemalThe health systems of many countries are desperate in the face of Covid-19, which has become a pandemic worldwide and caused the death of hundreds of thousands of people. In order to keep Covid-19, which has a very high propagation rate, under control, it is necessary to develop faster, low-cost and highly accurate methods, rather than a costly Polymerase Chain Reaction test that can yield results in a few hours. In this study, a deep learning-based approach that can detect Covid-19 quickly and with high accuracy on X-ray images, which are common in every hospital and can be obtained at low cost, was proposed. Deep features were extracted from X-Ray images in RGB, CIE Lab and RGB CIE color spaces using DenseNet121 and EfficientNet B0 pre-trained deep learning architectures and then obtained features were fed into a two-stage classifier approach. Each of the classifiers in the proposed approach performed binary classification. In the first stage, healthy and infected samples were separated, and in the second stage, infected samples were detected as Covid-19 or pneumonia. In the experiments, Bi-LSTM network and well-known ensemble approaches such as Gradient Boosting, Random Forest and Extreme Gradient Boosting were used as the classifier model and it was seen that the Bi-LSTM network had a superior performance than other classifiers with 92.489% accuracy.Publication Automatic classification of brain magnetic resonance images with hypercolumn deep features and machine learning.(2022-09-01T00:00:00Z) Akyol, Kemal; Akyol, KBrain tumours are life-threatening and their early detection is very important in a patient's life. At the present time, magnetic resonance imaging is one of the methods used for detecting brain tumours. Expert decision support systems serve specialist physicians to make more accurate diagnoses by minimizing the errors arising from their subjective opinions in real clinical settings. The model proposed in this study detects important keypoints and then extracts hypercolumn deep features of these keypoints from some convolutional layers of VGG16. Finally, Random Forest and Logistic Regression classifiers are fed with a set of these features. Random Forest classifier offered the best performance with 94.51% accuracy, 91.61% sensitivity, 8.39% false-negative rate, 97.42% specificity, and 97.29% precision using fivefold cross-validation in this study. Consequently, it is thought that the proposed model could contribute to field experts by integrating it into computer-aided brain magnetic resonance imaging diagnosis systems.Pubmed Automatic classification of brain magnetic resonance images with hypercolumn deep features and machine learning.(2022-09-01T00:00:00Z) Akyol, KemalBrain tumours are life-threatening and their early detection is very important in a patient's life. At the present time, magnetic resonance imaging is one of the methods used for detecting brain tumours. Expert decision support systems serve specialist physicians to make more accurate diagnoses by minimizing the errors arising from their subjective opinions in real clinical settings. The model proposed in this study detects important keypoints and then extracts hypercolumn deep features of these keypoints from some convolutional layers of VGG16. Finally, Random Forest and Logistic Regression classifiers are fed with a set of these features. Random Forest classifier offered the best performance with 94.51% accuracy, 91.61% sensitivity, 8.39% false-negative rate, 97.42% specificity, and 97.29% precision using fivefold cross-validation in this study. Consequently, it is thought that the proposed model could contribute to field experts by integrating it into computer-aided brain magnetic resonance imaging diagnosis systems.Pubmed Automatic Detection of Covid-19 with Bidirectional LSTM Network Using Deep Features Extracted from Chest X-ray Images.(2022-03-01T00:00:00Z) Akyol, Kemal; Şen, BahaCoronavirus disease, which comes up in China at the end of 2019 and showed different symptoms in people infected, affected millions of people. Computer-aided expert systems are needed due to the inadequacy of the reverse transcription-polymerase chain reaction kit, which is widely used in the diagnosis of this disease. Undoubtedly, expert systems that provide effective solutions to many problems will be very useful in the detection of Covid-19 disease, especially when unskilled personnel and financial deficiencies in underdeveloped countries are taken into consideration. In the literature, there are numerous machine learning approaches built with different classifiers in the detection of this disease. This paper proposes an approach based on deep learning which detects Covid-19 and no-finding cases using chest X-ray images. Here, the classification performance of the Bi-LSTM network on the deep features was compared with the Deep Neural Network within the frame of the fivefold cross-validation technique. Accuracy, sensitivity, specificity and precision metrics were used to evaluate the classification performance of the trained models. Bi-LSTM network presented better performance compare to DNN with 97.6% value of high accuracy despite the few numbers of Covid-19 images in the dataset. In addition, it is understood that concatenated deep features more meaningful than deep features obtained with pre-trained networks by one by, as well. Consequently, it is thought that the proposed study based on the Bi-LSTM network and concatenated deep features will be noteworthy in the design of highly sensitive automated Covid-19 monitoring systems.