Browsing by Author "Akdogan M."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Scopus Influence of gold diffusion-doped on phase formation, superconducting and microstructure properties of Bi1.8Pb0.35Sr 1.9Ca2.1Cu3Oy superconductors(2009-01-01) Ozturk O.; Akdogan M.; Terzioglu C.; Gencer A.We report on low-field magnetic properties of gold diffusion-doped Bi 1.8Pb0.35Sr1.9Ca2.1Cu 3Oy superconducting bulk samples by performing ac susceptibility measurements. The undoped samples were prepared by the standard solid-state reaction method. Doping of Bi1.8Pb0.35Sr 1.9Ca2.1Cu3Oy was carried out by means of Au-diffusion during sintering from an evaporated gold film on pellets. To investigate the effect of gold-diffusion and diffusion-annealing duration on transport, magnetic and microstructure properties of the superconducting samples we performed magnetoresistivity, scanning electron microscopy (SEM) and X-ray diffraction (XRD) measurements. The ac susceptibility as a function of temperature measurements were carried out at different values of the ac magnetic field amplitudes (Hac) in the range between 20A/m and 320 A/m for 211 Hz. The imaginary part of ac susceptibility measurements is used to calculate intergranular critical current density Jc(Tp) using the Bean Model. Jc(Tp) is seen to increase from 60 A cm -2 to 90 A cm-2 with increasing diffusion-annealing time from 10 h to 50 h. The peak temperature, Tp, in the imaginary part of the ac susceptibility is shifted to a lower temperature with decreasing diffusion-annealing duration as well as increasing ac magnetic fields. The force pinning density (αjj (0)) increased with increasing diffusion annealing time. The value of Tc in gold-diffused samples, in comparison with the undoped samples, increased from 100 0.2 K to 104 0.2 K. It was observed that the value of Tc-offset of the gold-doped samples enhanced with further increasing diffusion-annealing duration. XRD patterns and SEM micrographs are used to obtain information about Bi-2223 phase ratio, lattice parameters and grain size of the samples. Gold doping enhanced the formation high-Tc phase and increased the grain size. The possible reasons for the observed improvements in transport, microstructure and magnetic properties due to Au diffusion and diffusion-annealing time were discussed. © 2009 IOP Publishing Ltd.Scopus Investigation of mechanical and superconducting properties of iron diffusion-doped Bi-2223 superconductors(2011-09-01) Ozturk O.; Cetinkara H.A.; Asikuzun E.; Akdogan M.; Yilmazlar M.; Terzioglu C.The mechanical and superconducting properties of the Fe diffusion-doped (Bi-Pb)-2223 superconductor have been investigated. First, iron was evaporated on Bi-2223 superconductor and then the Fe layered superconductor was annealed at 830 °C for 10, 30 and 60 h. Static Vickers hardness, dc electrical resistivity, X-ray diffraction and scanning electron microcopy have been carried out to assess the effects of Fe doping. These measurements indicates that Fe doping, in comparison with the undoped samples, increased the critical transition temperature, and improved formation of high Tc phase, while decreasing the number and size of voids. Moreover, both microhardness and grain size were also enhanced by increasing the amount of diffusion. The values of microhardness were found to be load dependent. In addition, we have investigated the indentation size effect (ISE) behavior using some models such as the Kick's law, modified proportional specimen resistance (MPRS) model and the Hays- Kendall (HK) approach. Among them, both HK and MPRS models are successful. In this study, the possible reasons of noticed improvement on mechanical and physical properties due to iron diffusion are discussed. © Springer Science+Business Media, LLC 2011.Scopus Superconducting and mechanical properties of the bulk Bi(pb)SCCO system prepared via solid state and ammonium nitrate precipitation methods(2015-05-26) Safran S.; Kiliçarslan E.; Ozturk H.; Alp M.; Akdogan M.; Asikuzun E.; Ozturk O.; Kiliç A.We have investigated the effect of preparation method on superconducting and mechanical properties of Bi(Pb)-2223 bulk samples using Bi1.85Pb0.35Sr2Ca2Cu3O10±y stoichiometry. Solid-state reaction and ammonium nitrate precipitation methods have been used for fabrication of the bulk samples. In addition, the effect of annealing time on BSCCO samples have been studied. Structural, electrical, magnetic and microhardness analyses of samples are performed by the X-ray powder diffraction (XRD), the Scanning Electron Microscopy (SEM), DC resistivity, AC susceptibility and Vickers microhardness test. The critical transition temperature, phase purity, surface morphology and crystallinity of the prepared bulk samples are compared with each other. Elasticity (E), brittleness (Bi), fracture toughness (KIC) and yield strength (Y) values are also determined according to annealing time, applied load and production parameters of materials.