Torun, G.2024-11-192024-11-192024.01.012314-4629https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=dspace_ku&SrcAuth=WosAPI&KeyUT=WOS:001350809100001&DestLinkType=FullRecord&DestApp=WOS_CPLhttps://hdl.handle.net/20.500.12597/33792In this article, the p,q-Stancu-Schurer-Bleimann-Butzer-Hahn (p,q-SSBBH) operators are introduced. The Korovkin-type theorem is obtained to show the approximation properties of these operators. Then, the rate of convergence of these operators with the help of the modulus of continuity and Lipschitz-type maximal functions is calculated, respectively. Finally, for the asymptotic behavior of these operators, the Voronovskaja-type theorem is given. Furthermore, the convergence of these operators to the considered function f by plotting the graphs is demonstrated. And, this convergence is compared with the convergence of the p,q-Bleimann-Butzer-Hahn (p,q-BBH) operators to the same function.eninfo:eu-repo/semantics/openAccessKorovkin-type theoremmodulus of continuity(p,q)-Stancu-Schurer-Bleimann-Butzer-Hahn operators(p,q)-integers(p,q)-Bleimann-Butzer-Hahn operatorsrate of approximationVoronovskaja-type theoremSome Approximation Properties of the (p,q)-Stancu-Schurer-Bleimann-Butzer-Hahn OperatorsArticle10.1155/2024/908376600135080910000120242314-4785