Al-Sawaff Z.H., Dalgic S.S., Kandemirli F., Monajjemi M., Mollaamin F.Al-Sawaff, ZH, Dalgic, SS, Kandemirli, F, Monajjemi, M, Mollaamin, F2023-05-092023-05-092022-12-012022.01.010036-0244https://hdl.handle.net/20.500.12597/12056Abstract: This study aims to investigate the capability of aluminum-doped nanotubes, silicon-doped nanotubes, and silicon carbide nanotubes to adsorb Hydroxychloroquine (C18H26ClN3O) molecular using DFT theory at 6-31G** basis set and M062x level of theory. The calculated results indicate that the distance between nanotubes and the drug from the N site is lower than from all other locations sites for all investigated nanotubes, and adsorption is more favorable, especially for Al-CNT nanotube. The adsorption energy, hardness, softness, and fermi energy results reveal that the interaction of Hydroxychloroquine with Al-CNT is stronger than Si-CNT and SiC-NT. The results clarify that Al-CNT is a promising adsorbent for this drug as Eads of Hydroxychloroquine/Al-CNT complexes are –45.07, –15.78, –45.15, –93.53 kcal/mol in the gas phase and –43.02, –14.43, –43.86, –88.97 kcal/mol for aqueous solution. The energy gap of the Hydroxychloroquine/Al-CNT system is in the range of 2.32 to 3.84 eV.falsecarbon nanotubes | COVID-19 | DFT | drug adsorption | Hydroxychloroquine | thermodynamicsDFT Study Adsorption of Hydroxychloroquine for Treatment COVID-19 by SiC Nanotube and Al, Si Doping on Carbon Nanotube Surface: A Drug Delivery SimulationDFT Study Adsorption of Hydroxychloroquine for Treatment COVID-19 by SiC Nanotube and Al, Si Doping on Carbon Nanotube Surface: A Drug Delivery SimulationArticle10.1134/S003602442213026X10.1134/S003602442213026X2-s2.0-85145352177WOS:00090623700001729532966961531-863X