Scopus:
Comparison of Different Feature Selection Methods Using Support Vector Machine for Estimating Eye Angles

dc.contributor.authorSuicmez A.
dc.contributor.authorTepe C.
dc.date.accessioned2023-04-11T22:36:11Z
dc.date.accessioned2023-04-12T00:29:36Z
dc.date.available2023-04-11T22:36:11Z
dc.date.available2023-04-12T00:29:36Z
dc.date.issued2022-01-01
dc.description.abstractThis study aims to compare the effect of 5 different feature selection algorithms on support vector regression (SVR) to predict eye angular displacements corresponding to electrooculography (EOG) data. Feature extraction was done from the vertical and horizontal channels in the EOG signals in the data set. Eye angular displacements were estimated by processing these features with the SVR method. The performance of the feature selection methods was compared according to the RMSE evaluation criteria. The lowest error rates were obtained by using the minimum redundancy maximum relevance (fsrmrmr) feature selection method, 1,97E+00 in the vertical channel and 7,11E+00 in the horizontal channel.
dc.identifier.doi10.1109/ISMSIT56059.2022.9932725
dc.identifier.isbn9781665470131
dc.identifier.scopus2-s2.0-85142781005
dc.identifier.urihttps://hdl.handle.net/20.500.12597/3947
dc.relation.ispartofISMSIT 2022 - 6th International Symposium on Multidisciplinary Studies and Innovative Technologies, Proceedings
dc.rightsfalse
dc.subjectElectrooculography | Feature Selection | Gaze Angle | Machine Learning | Regression
dc.titleComparison of Different Feature Selection Methods Using Support Vector Machine for Estimating Eye Angles
dc.typeConference Paper
dspace.entity.typeScopus
local.indexed.atScopus
person.affiliation.nameKastamonu University
person.affiliation.nameOndokuz Mayis Üniversitesi
person.identifier.scopus-author-id57984956100
person.identifier.scopus-author-id35732398300
relation.isPublicationOfScopus67fc8a4e-fe2e-44cd-a024-404de792dbd9
relation.isPublicationOfScopus.latestForDiscovery67fc8a4e-fe2e-44cd-a024-404de792dbd9

Files