Publication:
Maximal sets of Hamilton cycles in Kn<sup>r</sup>;λ<inf>1</inf>,λ<inf>2</inf>

dc.contributor.authorDemir M., Rodger C.A.
dc.contributor.authorDemir, M, Rodger, CA
dc.date.accessioned2023-05-09T16:01:04Z
dc.date.available2023-05-09T16:01:04Z
dc.date.issued2020-10-01
dc.date.issued2020.01.01
dc.description.abstractLet Knr;λ1,λ2 be the r-partite multigraph in which each part has size n, where two vertices in the same part or different parts are joined by exactly λ1 edges or λ2 edges, respectively. It is proved that there exists a maximal set of t edge-disjoint Hamilton cycles in Knr;λ1,λ2 for [Formula presented], the upper bound being best possible. The results proved make use of the method of amalgamations.
dc.identifier.doi10.1016/j.disc.2020.112010
dc.identifier.eissn1872-681X
dc.identifier.issn0012-365X
dc.identifier.scopus2-s2.0-85086178239
dc.identifier.urihttps://hdl.handle.net/20.500.12597/12840
dc.identifier.volume343
dc.identifier.wosWOS:000558591300015
dc.relation.ispartofDiscrete Mathematics
dc.relation.ispartofDISCRETE MATHEMATICS
dc.rightsfalse
dc.subjectAmalgamations | Decomposition | Detachments | Hamilton cycles
dc.titleMaximal sets of Hamilton cycles in Kn<sup>r</sup>;λ<inf>1</inf>,λ<inf>2</inf>
dc.titleMaximal sets of Hamilton cycles in K (n(r); lambda(1), lambda(2))
dc.typeArticle
dspace.entity.typePublication
oaire.citation.issue10
oaire.citation.volume343
relation.isScopusOfPublication69d22b9e-8bdb-4e1b-bb8c-ff0329ffe948
relation.isScopusOfPublication.latestForDiscovery69d22b9e-8bdb-4e1b-bb8c-ff0329ffe948
relation.isWosOfPublicationdf55c3bc-8ab1-47f8-9ff3-2fc17c89cbb9
relation.isWosOfPublication.latestForDiscoverydf55c3bc-8ab1-47f8-9ff3-2fc17c89cbb9

Files

Collections